A platform for research: civil engineering, architecture and urbanism
A Two-stage Parametric Identification of Strong Nonlinear Structural Systems with Incomplete Response Measurements
Compared with the identification of linear structural parameters, it is more difficult to conduct parametric identification of strong nonlinear structural systems, especially when only incomplete structural responses are available. Although the extended Kalman filter (EKF) is useful for structural identification with partial measurements of structural responses and can be extended for the identification of nonlinear structures, EKF approximates nonlinear system through Taylor series expansion and is therefore not effective for the identification of strong nonlinear structural systems. Other approaches such as the unscented Kalman filter (UKF) have been proposed for the identification of strong nonlinear problems. Based on the fact that nonlinearities exist in local areas of structures, a straightforward two-stage identification approach is proposed in this paper for the identification of strong nonlinear structural parameters with incomplete response measurements. In the first stage, the locations of nonlinearities are identified based on the EKF for the identification of the equivalent linear structures. In the second stage, the UKF is utilized to identify the parameters of strong nonlinear structural systems. Therefore, the parametric identification of strong nonlinear structural parameters is simplified by the proposed approach. Several numerical examples with different nonlinear models and locations are used to validate the proposed approach.
A Two-stage Parametric Identification of Strong Nonlinear Structural Systems with Incomplete Response Measurements
Compared with the identification of linear structural parameters, it is more difficult to conduct parametric identification of strong nonlinear structural systems, especially when only incomplete structural responses are available. Although the extended Kalman filter (EKF) is useful for structural identification with partial measurements of structural responses and can be extended for the identification of nonlinear structures, EKF approximates nonlinear system through Taylor series expansion and is therefore not effective for the identification of strong nonlinear structural systems. Other approaches such as the unscented Kalman filter (UKF) have been proposed for the identification of strong nonlinear problems. Based on the fact that nonlinearities exist in local areas of structures, a straightforward two-stage identification approach is proposed in this paper for the identification of strong nonlinear structural parameters with incomplete response measurements. In the first stage, the locations of nonlinearities are identified based on the EKF for the identification of the equivalent linear structures. In the second stage, the UKF is utilized to identify the parameters of strong nonlinear structural systems. Therefore, the parametric identification of strong nonlinear structural parameters is simplified by the proposed approach. Several numerical examples with different nonlinear models and locations are used to validate the proposed approach.
A Two-stage Parametric Identification of Strong Nonlinear Structural Systems with Incomplete Response Measurements
Liu, Lijun (author) / Lei, Ying / He, Mingyu
2016
Article (Journal)
English
Parametric and Nonparametric Adaptive Identification of Nonlinear Structural Systems
British Library Conference Proceedings | 2001
|Research on structural system identification with incomplete measurements in time domain
British Library Conference Proceedings | 2003
|