A platform for research: civil engineering, architecture and urbanism
Hyperspectral Image Classification via Basic Thresholding Classifier
We propose a lightweight sparsity-based algorithm, namely, the basic thresholding classifier (BTC), for hyperspectral image (HSI) classification. BTC is a pixelwise classifier which uses only the spectral features of a given test pixel. It performs the classification using a predetermined dictionary consisting of labeled training pixels. It then produces the class label and residual vector of the test pixel. Since incorporating spatial and spectral information in HSI classification is quite an effective way of improving classification accuracy, we extend our proposal to a three-step spatial-spectral framework. First, every pixel of a given HSI is classified using BTC. The resulting residual vectors form a cube which could be interpreted as a stack of images representing residual maps. Second, each residual map is filtered using an averaging filter. Finally, the class label of each test pixel is determined based on minimal residual. Numerical results on public data sets show that our proposal outperforms well-known support vector machine-based techniques and sparsity-based greedy approaches like simultaneous orthogonal matching pursuit in terms of both classification accuracy and computational cost.
Hyperspectral Image Classification via Basic Thresholding Classifier
We propose a lightweight sparsity-based algorithm, namely, the basic thresholding classifier (BTC), for hyperspectral image (HSI) classification. BTC is a pixelwise classifier which uses only the spectral features of a given test pixel. It performs the classification using a predetermined dictionary consisting of labeled training pixels. It then produces the class label and residual vector of the test pixel. Since incorporating spatial and spectral information in HSI classification is quite an effective way of improving classification accuracy, we extend our proposal to a three-step spatial-spectral framework. First, every pixel of a given HSI is classified using BTC. The resulting residual vectors form a cube which could be interpreted as a stack of images representing residual maps. Second, each residual map is filtered using an averaging filter. Finally, the class label of each test pixel is determined based on minimal residual. Numerical results on public data sets show that our proposal outperforms well-known support vector machine-based techniques and sparsity-based greedy approaches like simultaneous orthogonal matching pursuit in terms of both classification accuracy and computational cost.
Hyperspectral Image Classification via Basic Thresholding Classifier
Toksoz, Mehmet Altan (author) / Ulusoy, Ilkay
2016
Article (Journal)
English
Local classification TIB:
770/3710/5670
BKL:
38.03
Methoden und Techniken der Geowissenschaften
/
74.41
Luftaufnahmen, Photogrammetrie
Hyperspectral Image Classification via Kernel Basic Thresholding Classifier
Online Contents | 2017
|Active Learning With Gaussian Process Classifier for Hyperspectral Image Classification
Online Contents | 2015
|Class-Dependent Sparse Representation Classifier for Robust Hyperspectral Image Classification
Online Contents | 2015
|