A platform for research: civil engineering, architecture and urbanism
Integrating powdered activated carbon into wastewater tertiary filter for micro-pollutant removal
Integrating powdered activated carbon (PAC) into wastewater tertiary treatment is a promising technology to reduce organic micro-pollutant (OMP) discharge into the receiving waters. To take advantage of the existing tertiary filter, PAC was pre-embedded inside the filter bed acting as a fixed-bed adsorber. The pre-embedding (i.e. immobilization) of PAC was realized by direct dosing a PAC solution on the filter top, which was then promoted to penetrate into the filter media by a down-flow of tap water. In order to examine the effectiveness of this PAC pre-embedded filter towards OMP removal, batch adsorption tests, representing PAC contact reactor (with the same PAC mass-to-treated water volume ratio as in the PAC pre-embedded filter) were performed as references. Moreover, as a conventional dosing option, PAC was dosed continuously with the filter influent (i.e. the wastewater secondary effluent with the investigated OMPs). Comparative results confirmed a higher OMP removal efficiency associated with the PAC pre-embedded filter, as compared to the batch system with a practical PAC residence time. Furthermore, over a filtration period of 10 h (approximating a realistic filtration cycle for tertiary filters), the continuous dosing approach resulted in less OMP removal. Therefore, it was concluded that the pre-embedding approach can be preferentially considered when integrating PAC into the wastewater tertiary treatment for OMP elimination.
Integrating powdered activated carbon into wastewater tertiary filter for micro-pollutant removal
Integrating powdered activated carbon (PAC) into wastewater tertiary treatment is a promising technology to reduce organic micro-pollutant (OMP) discharge into the receiving waters. To take advantage of the existing tertiary filter, PAC was pre-embedded inside the filter bed acting as a fixed-bed adsorber. The pre-embedding (i.e. immobilization) of PAC was realized by direct dosing a PAC solution on the filter top, which was then promoted to penetrate into the filter media by a down-flow of tap water. In order to examine the effectiveness of this PAC pre-embedded filter towards OMP removal, batch adsorption tests, representing PAC contact reactor (with the same PAC mass-to-treated water volume ratio as in the PAC pre-embedded filter) were performed as references. Moreover, as a conventional dosing option, PAC was dosed continuously with the filter influent (i.e. the wastewater secondary effluent with the investigated OMPs). Comparative results confirmed a higher OMP removal efficiency associated with the PAC pre-embedded filter, as compared to the batch system with a practical PAC residence time. Furthermore, over a filtration period of 10 h (approximating a realistic filtration cycle for tertiary filters), the continuous dosing approach resulted in less OMP removal. Therefore, it was concluded that the pre-embedding approach can be preferentially considered when integrating PAC into the wastewater tertiary treatment for OMP elimination.
Integrating powdered activated carbon into wastewater tertiary filter for micro-pollutant removal
Hu, Jingyi (author) / Aarts, Annelies / Shang, Ran / Heijman, Bas / Rietveld, Luuk
2016
Article (Journal)
English
BKL:
43.00
Reuse of spent granular activated carbon for organic micro-pollutant removal from treated wastewater
Online Contents | 2015
|Removal of phenol by powdered activated carbon adsorption
Springer Verlag | 2013
|Removal of microcystin variants with powdered activated carbon
British Library Conference Proceedings | 2002
|Removal of pesticides by powdered activated carbon -- Practical aspects
Online Contents | 1996
|Removal of pesticides by powdered activated carbon-practical aspects
British Library Conference Proceedings | 1996
|