A platform for research: civil engineering, architecture and urbanism
Maintenance planning using continuous-state partially observable Markov decision processes and non-linear action models
The signs of deterioration in worldwide infrastructure and the associated socio-economic and environmental losses call for sustainable resource management and policy-making. To this end, this work presents an enhanced variant of partially observable Markov decision processes (POMDPs) for the life cycle assessment and maintenance planning of infrastructure. POMDPs comprise a method, commonly employed in the field of robotics, for decision-making on the basis of uncertain observations. In the work presented herein, a continuous-state POMDP formulation is presented which is adapted to the problem of decision-making for optimal management of civil structures. The aforementioned problem may comprise non-linear and non-deterministic action and observation models. The continuous-state POMDP is herein coupled with a normalised unscented transform (NUT) in order to deliver a framework able to tackle non-linearities that likely characterise action models. The capabilities of this enhanced framework and its applicability to the maintenance planning problem are presented via two applications. In a first illustrative example, the use of the NUT is demonstrated within the framework of the value iteration algorithm. Next, the proposed continuous-state framework is compared against a discrete-state formulation for implementation on a life cycle assessment problem.
Maintenance planning using continuous-state partially observable Markov decision processes and non-linear action models
The signs of deterioration in worldwide infrastructure and the associated socio-economic and environmental losses call for sustainable resource management and policy-making. To this end, this work presents an enhanced variant of partially observable Markov decision processes (POMDPs) for the life cycle assessment and maintenance planning of infrastructure. POMDPs comprise a method, commonly employed in the field of robotics, for decision-making on the basis of uncertain observations. In the work presented herein, a continuous-state POMDP formulation is presented which is adapted to the problem of decision-making for optimal management of civil structures. The aforementioned problem may comprise non-linear and non-deterministic action and observation models. The continuous-state POMDP is herein coupled with a normalised unscented transform (NUT) in order to deliver a framework able to tackle non-linearities that likely characterise action models. The capabilities of this enhanced framework and its applicability to the maintenance planning problem are presented via two applications. In a first illustrative example, the use of the NUT is demonstrated within the framework of the value iteration algorithm. Next, the proposed continuous-state framework is compared against a discrete-state formulation for implementation on a life cycle assessment problem.
Maintenance planning using continuous-state partially observable Markov decision processes and non-linear action models
Schöbi, Roland (author) / Chatzi, Eleni N
2016
Article (Journal)
English
Taylor & Francis Verlag | 2016
|A partially observable markov decision process model for bridge inspection and maintenance
British Library Conference Proceedings | 1995
|Taylor & Francis Verlag | 2011
|Taylor & Francis Verlag | 2005
|