A platform for research: civil engineering, architecture and urbanism
Crowdsourcing functions of the living city from Twitter and Foursquare data
Urban functions are closely related to people's spatiotemporal activity patterns, transportation needs, and a city's business distribution and development trends. Studies investigating urban functions have used different data sources, such as remotely sensed imageries, observation, photography, and cognitive maps. However, these data sources usually suffer from low spatial, temporal, and thematic resolution. This article attempts to investigate human activities to understand urban functions through crowdsourcing social media data. In this study, we mined Twitter and Foursquare data to extract and analyze six types of human activities. The spatiotemporal analysis revealed hotspots for different activity intensities at different temporal resolution. We also applied the classified model in a real-time system to extract information of various urban functions. This study demonstrates the significance and usefulness of social sensing in analyzing urban functions. By combining different platforms of social media data and analyzing people's geo-tagged city experience, this article contributes to leverage voluntary local knowledge to better depict human dynamics, discover spatiotemporal city characteristics, and convey information about cities.
Crowdsourcing functions of the living city from Twitter and Foursquare data
Urban functions are closely related to people's spatiotemporal activity patterns, transportation needs, and a city's business distribution and development trends. Studies investigating urban functions have used different data sources, such as remotely sensed imageries, observation, photography, and cognitive maps. However, these data sources usually suffer from low spatial, temporal, and thematic resolution. This article attempts to investigate human activities to understand urban functions through crowdsourcing social media data. In this study, we mined Twitter and Foursquare data to extract and analyze six types of human activities. The spatiotemporal analysis revealed hotspots for different activity intensities at different temporal resolution. We also applied the classified model in a real-time system to extract information of various urban functions. This study demonstrates the significance and usefulness of social sensing in analyzing urban functions. By combining different platforms of social media data and analyzing people's geo-tagged city experience, this article contributes to leverage voluntary local knowledge to better depict human dynamics, discover spatiotemporal city characteristics, and convey information about cities.
Crowdsourcing functions of the living city from Twitter and Foursquare data
Zhou, Xiaolu (author) / Zhang, Liang
2016
Article (Journal)
English
British Library Online Contents | 2005
|Check-in: foursquare and the rich annotated topology of citizen-generated hyperlocal data
British Library Online Contents | 2017
Crowdsourcing Analysis of Twitter Data on Climate Change: Paid Workers vs. Volunteers
DOAJ | 2017
|British Library Online Contents | 2018
|Online Contents | 2010
|