A platform for research: civil engineering, architecture and urbanism
GNSS Interferometric Radio Occultation
GNSS Reflectometry, Scatterometry and Radio Occultation aboard ISS is the mission concept under study within the European Space Agency. Its core payload consists of an interferometric GNSS-Reflectometry ocean altimeter/scatterometer which does not need to generate any clean replicas of the GNSS codes for its operation. This paper describes a new interferometric technique by which such payload could also perform radio occultation as an add-on, without requiring any additional hardware resources, like the generation of clean code replicas or a storage of them. Two possibilities are studied. The first one consists of performing the complex autocorrelation function of the received signal transmitted by a rising or setting GNSS satellite. The autocorrelation function is evaluated around time epochs that are multiples of the period of suitable codes found in the modulation of the navigation signals. Satellite discrimination has to be performed spatially, through the antenna pattern. The second possibility consists in acquiring the reference signal separately from the occultation event which, in turn, has two options depending upon the geometry at which the reference is recorded: zenithal and top of the atmosphere. The signal-to-noise ratio, the satellite discrimination, and the impact of clock errors are assessed.
GNSS Interferometric Radio Occultation
GNSS Reflectometry, Scatterometry and Radio Occultation aboard ISS is the mission concept under study within the European Space Agency. Its core payload consists of an interferometric GNSS-Reflectometry ocean altimeter/scatterometer which does not need to generate any clean replicas of the GNSS codes for its operation. This paper describes a new interferometric technique by which such payload could also perform radio occultation as an add-on, without requiring any additional hardware resources, like the generation of clean code replicas or a storage of them. Two possibilities are studied. The first one consists of performing the complex autocorrelation function of the received signal transmitted by a rising or setting GNSS satellite. The autocorrelation function is evaluated around time epochs that are multiples of the period of suitable codes found in the modulation of the navigation signals. Satellite discrimination has to be performed spatially, through the antenna pattern. The second possibility consists in acquiring the reference signal separately from the occultation event which, in turn, has two options depending upon the geometry at which the reference is recorded: zenithal and top of the atmosphere. The signal-to-noise ratio, the satellite discrimination, and the impact of clock errors are assessed.
GNSS Interferometric Radio Occultation
Martin-Neira, Manuel (author)
2016
Article (Journal)
English
Local classification TIB:
770/3710/5670
BKL:
38.03
Methoden und Techniken der Geowissenschaften
/
74.41
Luftaufnahmen, Photogrammetrie
Sensitivity of PAZ LEO Polarimetric GNSS Radio-Occultation Experiment to Precipitation Events
Online Contents | 2015
|Ship-borne wave gauge using GNSS interferometric reflectometry
Taylor & Francis Verlag | 2024
|