A platform for research: civil engineering, architecture and urbanism
Ship Detection in Spaceborne Optical Image With SVD Networks
Automatic ship detection on spaceborne optical images is a challenging task, which has attracted wide attention due to its extensive potential applications in maritime security and traffic control. Although some optical image ship detection methods have been proposed in recent years, there are still three obstacles in this task: 1) the inference of clouds and strong waves; 2) difficulties in detecting both inshore and offshore ships; and 3) high computational expenses. In this paper, we propose a novel ship detection method called SVD Networks (SVDNet), which is fast, robust, and structurally compact. SVDNet is designed based on the recent popular convolutional neural networks and the singular value decompensation algorithm. It provides a simple but efficient way to adaptively learn features from remote sensing images. We evaluate our method on some spaceborne optical images of GaoFen-1 and Venezuelan Remote Sensing Satellites. The experimental results demonstrate that our method achieves high detection robustness and a desirable time performance in response to all of the above three problems.
Ship Detection in Spaceborne Optical Image With SVD Networks
Automatic ship detection on spaceborne optical images is a challenging task, which has attracted wide attention due to its extensive potential applications in maritime security and traffic control. Although some optical image ship detection methods have been proposed in recent years, there are still three obstacles in this task: 1) the inference of clouds and strong waves; 2) difficulties in detecting both inshore and offshore ships; and 3) high computational expenses. In this paper, we propose a novel ship detection method called SVD Networks (SVDNet), which is fast, robust, and structurally compact. SVDNet is designed based on the recent popular convolutional neural networks and the singular value decompensation algorithm. It provides a simple but efficient way to adaptively learn features from remote sensing images. We evaluate our method on some spaceborne optical images of GaoFen-1 and Venezuelan Remote Sensing Satellites. The experimental results demonstrate that our method achieves high detection robustness and a desirable time performance in response to all of the above three problems.
Ship Detection in Spaceborne Optical Image With SVD Networks
Zou, Zhengxia (author) / Shi, Zhenwei
2016
Article (Journal)
English
Local classification TIB:
770/3710/5670
BKL:
38.03
Methoden und Techniken der Geowissenschaften
/
74.41
Luftaufnahmen, Photogrammetrie
Ship detection in spaceborne optical image with SVD networks
Online Contents | 2016
|Ship Detection in Spaceborne Optical Image With SVD Networks
Online Contents | 2016
|An Automatic Ship and Ship Wake Detection System for Spaceborne SAR Images in Coastal Regions
Online Contents | 1996
|