A platform for research: civil engineering, architecture and urbanism
Effective Denoising and Classification of Hyperspectral Images Using Curvelet Transform and Singular Spectrum Analysis
Hyperspectral imaging (HSI) classification has become a popular research topic in recent years, and effective feature extraction is an important step before the classification task. Traditionally, spectral feature extraction techniques are applied to the HSI data cube directly. This paper presents a novel algorithm for HSI feature extraction by exploiting the curvelet-transformed domain via a relatively new spectral feature processing technique-singular spectrum analysis (SSA). Although the wavelet transform has been widely applied for HSI data analysis, the curvelet transform is employed in this paper since it is able to separate image geometric details and background noise effectively. Using the support vector machine classifier, experimental results have shown that features extracted by SSA on curvelet coefficients have better performance in terms of classification accuracy over features extracted on wavelet coefficients. Since the proposed approach mainly relies on SSA for feature extraction on the spectral dimension, it actually belongs to the spectral feature extraction category. Therefore, the proposed method has also been compared with some state-of-the-art spectral feature extraction techniques to show its efficacy. In addition, it has been proven that the proposed method is able to remove the undesirable artifacts introduced during the data acquisition process. By adding an extra spatial postprocessing step to the classified map achieved using the proposed approach, we have shown that the classification performance is comparable with several recent spectral-spatial classification methods.
Effective Denoising and Classification of Hyperspectral Images Using Curvelet Transform and Singular Spectrum Analysis
Hyperspectral imaging (HSI) classification has become a popular research topic in recent years, and effective feature extraction is an important step before the classification task. Traditionally, spectral feature extraction techniques are applied to the HSI data cube directly. This paper presents a novel algorithm for HSI feature extraction by exploiting the curvelet-transformed domain via a relatively new spectral feature processing technique-singular spectrum analysis (SSA). Although the wavelet transform has been widely applied for HSI data analysis, the curvelet transform is employed in this paper since it is able to separate image geometric details and background noise effectively. Using the support vector machine classifier, experimental results have shown that features extracted by SSA on curvelet coefficients have better performance in terms of classification accuracy over features extracted on wavelet coefficients. Since the proposed approach mainly relies on SSA for feature extraction on the spectral dimension, it actually belongs to the spectral feature extraction category. Therefore, the proposed method has also been compared with some state-of-the-art spectral feature extraction techniques to show its efficacy. In addition, it has been proven that the proposed method is able to remove the undesirable artifacts introduced during the data acquisition process. By adding an extra spatial postprocessing step to the classified map achieved using the proposed approach, we have shown that the classification performance is comparable with several recent spectral-spatial classification methods.
Effective Denoising and Classification of Hyperspectral Images Using Curvelet Transform and Singular Spectrum Analysis
Qiao, Tong (author) / Ren, Jinchang / Wang, Zheng / Zabalza, Jaime / Sun, Meijun / Zhao, Huimin / Li, Shutao / Benediktsson, Jon Atli / Dai, Qingyun / Marshall, Stephen
2017
Article (Journal)
English
Local classification TIB:
770/3710/5670
BKL:
38.03
Methoden und Techniken der Geowissenschaften
/
74.41
Luftaufnahmen, Photogrammetrie
Image Denoising Based on Reaction-Diffusion Equation and Curvelet Transform
British Library Conference Proceedings | 2011
|Phase-Preserved Curvelet Thresholding for Image Denoising
Springer Verlag | 2022
|Phase-Preserved Curvelet Thresholding for Image Denoising
Springer Verlag | 2022
|Denoising of Hyperspectral Images Using the PARAFAC Model and Statistical Performance Analysis
Online Contents | 2012
|