A platform for research: civil engineering, architecture and urbanism
An Approach for Refocusing of Ground Moving Target Without Target Motion Parameter Estimation
In synthetic aperture radar (SAR), long integration time may induce range migration and Doppler frequency migration of a received signal, which may degrade the SAR imaging performance of ground moving targets. Most of the conventional algorithms deal with the problems of range migration and Doppler frequency migration based on parameter searching. However, the exhaustive searching of target motion parameters may result in heavy computational burden. To avoid this problem, this paper proposes a new imaging method for ground moving targets without target motion parameter estimation. First, Keystone transform is applied to correct the range walk. Second, range curvature is compensated by the matched filtering function. Third, Doppler frequency migration is compensated via multiplying the data in range- and azimuth-time domains by its reversed conjugate data according to the equal interval sampling of the azimuth slow time, which avoids the searching procedure for target motion parameter estimation. Finally, the signal energy will be well accumulated in the range-Doppler domain, and thus, the moving targets can be efficiently recognized in the focused image. The major advantage of the proposed method is that it can obtain well-focused images of all targets in one processing step without target motion parameter estimation; thus, it is computationally efficient. Both simulated and real data processing results are used to validate the effectiveness of the proposed method.
An Approach for Refocusing of Ground Moving Target Without Target Motion Parameter Estimation
In synthetic aperture radar (SAR), long integration time may induce range migration and Doppler frequency migration of a received signal, which may degrade the SAR imaging performance of ground moving targets. Most of the conventional algorithms deal with the problems of range migration and Doppler frequency migration based on parameter searching. However, the exhaustive searching of target motion parameters may result in heavy computational burden. To avoid this problem, this paper proposes a new imaging method for ground moving targets without target motion parameter estimation. First, Keystone transform is applied to correct the range walk. Second, range curvature is compensated by the matched filtering function. Third, Doppler frequency migration is compensated via multiplying the data in range- and azimuth-time domains by its reversed conjugate data according to the equal interval sampling of the azimuth slow time, which avoids the searching procedure for target motion parameter estimation. Finally, the signal energy will be well accumulated in the range-Doppler domain, and thus, the moving targets can be efficiently recognized in the focused image. The major advantage of the proposed method is that it can obtain well-focused images of all targets in one processing step without target motion parameter estimation; thus, it is computationally efficient. Both simulated and real data processing results are used to validate the effectiveness of the proposed method.
An Approach for Refocusing of Ground Moving Target Without Target Motion Parameter Estimation
Huang, Penghui (author) / Liao, Guisheng / Yang, Zhiwei / Xia, Xiang-Gen / Ma, Jingtao / Zhang, Xuepan
2017
Article (Journal)
English
Local classification TIB:
770/3710/5670
BKL:
38.03
Methoden und Techniken der Geowissenschaften
/
74.41
Luftaufnahmen, Photogrammetrie
Ground Moving Target Imaging and Motion Parameter Estimation With Airborne Dual-Channel CSSAR
Online Contents | 2017
|Ground Moving Target Indication via Multichannel Airborne SAR
Online Contents | 2011
|Robust Ground Moving-Target Imaging Using Deramp-Keystone Processing
Online Contents | 2013
|Long-CPI Multichannel SAR-Based Ground Moving Target Indication
Online Contents | 2016
|Refocusing Architectural Science
Online Contents | 2017
|