A platform for research: civil engineering, architecture and urbanism
Numerical validation of viscoelastic responses of a pavement structure in a full-scale accelerated pavement test
This paper demonstrates the application of a generalised layered linear viscoelastic (LVE) analysis for estimating the structural response of flexible pavements. A comparison of the direct layered viscoelastic responses with approximate solutions based on the linear elastic (LE) and LVE collocation methods was also carried out. The different approaches were implemented by extending a layered elastic program with an improved computational performance. The LE and LVE collocation methods were further extended for analysis of pavements under moving loads. The methods were illustrated by analysing a pavement structure subjected to moving wheel loads of 30, 50, 60 and 80 kN using a Heavy Vehicle Simulator (HVS). The various responses (stresses and strains) in the pavement, at pavement temperatures of 0, 10 and 20°C, were measured using various types of sensors installed in the structure. It was shown that the approximated LVE solution based on the LE collocation method agreed very well with the measurements and is computationally the least expensive.
Numerical validation of viscoelastic responses of a pavement structure in a full-scale accelerated pavement test
This paper demonstrates the application of a generalised layered linear viscoelastic (LVE) analysis for estimating the structural response of flexible pavements. A comparison of the direct layered viscoelastic responses with approximate solutions based on the linear elastic (LE) and LVE collocation methods was also carried out. The different approaches were implemented by extending a layered elastic program with an improved computational performance. The LE and LVE collocation methods were further extended for analysis of pavements under moving loads. The methods were illustrated by analysing a pavement structure subjected to moving wheel loads of 30, 50, 60 and 80 kN using a Heavy Vehicle Simulator (HVS). The various responses (stresses and strains) in the pavement, at pavement temperatures of 0, 10 and 20°C, were measured using various types of sensors installed in the structure. It was shown that the approximated LVE solution based on the LE collocation method agreed very well with the measurements and is computationally the least expensive.
Numerical validation of viscoelastic responses of a pavement structure in a full-scale accelerated pavement test
Ahmed, Abubeker W (author) / Erlingsson, Sigurdur
2017
Article (Journal)
English
Taylor & Francis Verlag | 2017
|Assessment of Pavement Life at First Full-Scale Accelerated Pavement Test in Louisiana
British Library Online Contents | 1999
|Full-Scale Accelerated Pavement Testing and Instrumentation
Springer Verlag | 2022
|