A platform for research: civil engineering, architecture and urbanism
Transformation of hydroxylated and methoxylated 2,2′,4,4′,5-brominated diphenyl ether(BDE-99) in plants
The occurrence and fate of hydroxylated polybrominated diphenyl ethers(OH-PBDEs) and methoxylated polybrominated diphenyl ethers(Me O-PBDEs) have received significant attention. However, there is limited information on the metabolism relationship between OH-pentaB DEs and MeO-pentaB DEs that were frequently detected with relatively high concentrations in the environment. In this study, the biotransformation between OH-BDE-99 and MeO-BDE-99 was investigated in rice, wheat, and soybean plants. All the three plants can metabolize OH-BDE-99 to corresponding homologous methoxylated metabolites, while the transformation from MeO-BDE-99 to OH-BDE-99 could only be found in soybean. The conversion of parent compounds was the highest in soybean, followed by wheat and rice. Transformation products were found mainly in the roots, with few metabolites being translocated to the shoots and solution after exposure. The results of this study provide valuable information for a better understanding of the accumulation and transformation of OH-PBDEs and MeO-PBDEs in different plants.
Transformation of hydroxylated and methoxylated 2,2′,4,4′,5-brominated diphenyl ether(BDE-99) in plants
The occurrence and fate of hydroxylated polybrominated diphenyl ethers(OH-PBDEs) and methoxylated polybrominated diphenyl ethers(Me O-PBDEs) have received significant attention. However, there is limited information on the metabolism relationship between OH-pentaB DEs and MeO-pentaB DEs that were frequently detected with relatively high concentrations in the environment. In this study, the biotransformation between OH-BDE-99 and MeO-BDE-99 was investigated in rice, wheat, and soybean plants. All the three plants can metabolize OH-BDE-99 to corresponding homologous methoxylated metabolites, while the transformation from MeO-BDE-99 to OH-BDE-99 could only be found in soybean. The conversion of parent compounds was the highest in soybean, followed by wheat and rice. Transformation products were found mainly in the roots, with few metabolites being translocated to the shoots and solution after exposure. The results of this study provide valuable information for a better understanding of the accumulation and transformation of OH-PBDEs and MeO-PBDEs in different plants.
Transformation of hydroxylated and methoxylated 2,2′,4,4′,5-brominated diphenyl ether(BDE-99) in plants
2016
Article (Journal)
English
Hydroxylated and methoxylated polybrominated diphenyl ethers in blood plasma of humans in Hong Kong
Online Contents | 2012
|