A platform for research: civil engineering, architecture and urbanism
Dictionary Learning-Based Feature-Level Domain Adaptation for Cross-Scene Hyperspectral Image Classification
A big challenge of hyperspectral image (HSI) classification is the small size of labeled pixels for training classifier. In real remote sensing applications, we always face the situation that an HSI scene is not labeled at all, or is with very limited number of labeled pixels, but we have sufficient labeled pixels in another HSI scene with the similar land cover classes. In this paper, we try to classify an HSI scene containing no labeled sample or only a few labeled samples with the help of a similar HSI scene having a relative large size of labeled samples. The former scene is defined as the target scene, while the latter one is the source scene. We name this classification problem as cross-scene classification. The main challenge of cross-scene classification is spectral shift, i.e., even for the same class in different scenes, their spectral distributions maybe have significant deviation. As all or most training samples are drawn from the source scene, while the prediction is performed in the target scene, the difference in spectral distribution would greatly deteriorate the classification performance. To solve this problem, we propose a dictionary learning-based feature-level domain adaptation technique, which aligns the spectral distributions between source and target scenes by projecting their spectral features into a shared low-dimensional embedding space by multitask dictionary learning. The basis atoms in the learned dictionary represent the common spectral components, which span a cross-scene feature space to minimize the effect of spectral shift. After the HSIs of two scenes are transformed into the shared space, any traditional HSI classification approach can be used. In this paper, sparse logistic regression (SRL) is selected as the classifier. Especially, if there are a few labeled pixels in the target domain, multitask SRL is used to further promote the classification performance. The experimental results on synthetic and real HSIs show the advantages of the proposed method for cross-scene classification.
Dictionary Learning-Based Feature-Level Domain Adaptation for Cross-Scene Hyperspectral Image Classification
A big challenge of hyperspectral image (HSI) classification is the small size of labeled pixels for training classifier. In real remote sensing applications, we always face the situation that an HSI scene is not labeled at all, or is with very limited number of labeled pixels, but we have sufficient labeled pixels in another HSI scene with the similar land cover classes. In this paper, we try to classify an HSI scene containing no labeled sample or only a few labeled samples with the help of a similar HSI scene having a relative large size of labeled samples. The former scene is defined as the target scene, while the latter one is the source scene. We name this classification problem as cross-scene classification. The main challenge of cross-scene classification is spectral shift, i.e., even for the same class in different scenes, their spectral distributions maybe have significant deviation. As all or most training samples are drawn from the source scene, while the prediction is performed in the target scene, the difference in spectral distribution would greatly deteriorate the classification performance. To solve this problem, we propose a dictionary learning-based feature-level domain adaptation technique, which aligns the spectral distributions between source and target scenes by projecting their spectral features into a shared low-dimensional embedding space by multitask dictionary learning. The basis atoms in the learned dictionary represent the common spectral components, which span a cross-scene feature space to minimize the effect of spectral shift. After the HSIs of two scenes are transformed into the shared space, any traditional HSI classification approach can be used. In this paper, sparse logistic regression (SRL) is selected as the classifier. Especially, if there are a few labeled pixels in the target domain, multitask SRL is used to further promote the classification performance. The experimental results on synthetic and real HSIs show the advantages of the proposed method for cross-scene classification.
Dictionary Learning-Based Feature-Level Domain Adaptation for Cross-Scene Hyperspectral Image Classification
Ye, Minchao (author) / Qian, Yuntao / Zhou, Jun / Tang, Yuan Yan
2017
Article (Journal)
English
Local classification TIB:
770/3710/5670
BKL:
38.03
Methoden und Techniken der Geowissenschaften
/
74.41
Luftaufnahmen, Photogrammetrie
Domain Adaptation Network for Cross-Scene Classification
Online Contents | 2017
|Spatial-Aware Dictionary Learning for Hyperspectral Image Classification
Online Contents | 2015
|Discriminative Robust Deep Dictionary Learning for Hyperspectral Image Classification
Online Contents | 2017
|Hyperspectral Image Classification Using Dictionary-Based Sparse Representation
Online Contents | 2011
|