A platform for research: civil engineering, architecture and urbanism
Optimization on submarine stern design
This article discusses the optimum hydrodynamic shape of the submarine stern based on the minimum resistance. Submarines consist of two major categories of hydrodynamic shape: the teardrop shape and the cylindrical middle-body shape. Due to the parallel middle-body shape in most of the naval submarines, those with cylindrical middle-body are studied here. The bare hull has three main parts: bow, cylinder and stern. This article proposes an optimum stern shape by the computational fluid dynamics method via Flow Vision software. In the hydrodynamic design point of view, the major parameters of the stern included the wake field (variation in fluid velocity) and resistance. The focus of this article is on the resistance at fully submerged mode without any regard for free surface effects. First, all the available equations for the stern shape of submarine are presented. Second, a computational fluid dynamics analysis has been performed according to the shape equations. For all the status, the following parameters are assumed to be constant: velocity, dimensions of domain, diameter, bow shape and total length (bow, middle and stern length).
Optimization on submarine stern design
This article discusses the optimum hydrodynamic shape of the submarine stern based on the minimum resistance. Submarines consist of two major categories of hydrodynamic shape: the teardrop shape and the cylindrical middle-body shape. Due to the parallel middle-body shape in most of the naval submarines, those with cylindrical middle-body are studied here. The bare hull has three main parts: bow, cylinder and stern. This article proposes an optimum stern shape by the computational fluid dynamics method via Flow Vision software. In the hydrodynamic design point of view, the major parameters of the stern included the wake field (variation in fluid velocity) and resistance. The focus of this article is on the resistance at fully submerged mode without any regard for free surface effects. First, all the available equations for the stern shape of submarine are presented. Second, a computational fluid dynamics analysis has been performed according to the shape equations. For all the status, the following parameters are assumed to be constant: velocity, dimensions of domain, diameter, bow shape and total length (bow, middle and stern length).
Optimization on submarine stern design
2017
Article (Journal)
English
Hulls , Ship technology , Hydrodynamics , Simulation , Velocity , Wakes , Fluid dynamics , Submarines
Optimization on submarine stern design
SAGE Publications | 2017
|British Library Online Contents | 2004
British Library Online Contents | 2000
|UB Braunschweig | 1920
|Online Contents | 1975