A platform for research: civil engineering, architecture and urbanism
Effect of intumescent compositions on flammable properties of ethylene vinyl acetate and polypropylene
An intumescent flame retardant (IFR) system was prepared by 2 ways. Firstly, bis(2,6,7‐trioxa‐1‐phosphabicyclo[2,2,2]octane‐1‐oxa‐4‐hydroxymethyl) phosphonate methyl (bis‐PM) was synthesized and characterized by 1 H nuclear magnetic resonance (NMR), 31 P NMR, and Fourier transform infrared spectroscopies. This carbonization agent was mixed with melamine (ME), ammonium polyphosphate (APP), and pentaerythritol (PER) to constitute an IFR system. Secondly, an IFR system by reaction was prepared by reaction, and the presence of compositions in product was confirmed by 1 H NMR and Fourier transform infrared. Both of systems enhanced the flammable retardation of ethylene vinyl acetate (EVA) and polypropylene (PP). Flammability and thermal behaviors of IFR‐EVA and IFR‐PP were investigated by vertical burning test (UL‐94 V) and thermogravimetric analysis. Results indicated that the IFR systems performed excellent flame retardancy and antidripping ability for PP. At 30 wt% loading, the optimum flame retardant formulations that are bis‐PM/ME: 4/1, bis‐PM/ME/PER: 3/1/1, APP/ME/PER: 3/1/1, and bis‐PM/ME/PER/APP: 1.5/1.5/1/1 give UL‐94 V‐0 rating. However, V‐0 rating results were only obtained for EVA when systems contain bis‐PM/ME: 4/1 and bis‐PM/ME/PER: 3/1/1. The char yield from decomposition of the IFR‐EVA and IFR‐PP has effects on the flame retardancy and antidripping behaviors of EVA and PP.
Effect of intumescent compositions on flammable properties of ethylene vinyl acetate and polypropylene
An intumescent flame retardant (IFR) system was prepared by 2 ways. Firstly, bis(2,6,7‐trioxa‐1‐phosphabicyclo[2,2,2]octane‐1‐oxa‐4‐hydroxymethyl) phosphonate methyl (bis‐PM) was synthesized and characterized by 1 H nuclear magnetic resonance (NMR), 31 P NMR, and Fourier transform infrared spectroscopies. This carbonization agent was mixed with melamine (ME), ammonium polyphosphate (APP), and pentaerythritol (PER) to constitute an IFR system. Secondly, an IFR system by reaction was prepared by reaction, and the presence of compositions in product was confirmed by 1 H NMR and Fourier transform infrared. Both of systems enhanced the flammable retardation of ethylene vinyl acetate (EVA) and polypropylene (PP). Flammability and thermal behaviors of IFR‐EVA and IFR‐PP were investigated by vertical burning test (UL‐94 V) and thermogravimetric analysis. Results indicated that the IFR systems performed excellent flame retardancy and antidripping ability for PP. At 30 wt% loading, the optimum flame retardant formulations that are bis‐PM/ME: 4/1, bis‐PM/ME/PER: 3/1/1, APP/ME/PER: 3/1/1, and bis‐PM/ME/PER/APP: 1.5/1.5/1/1 give UL‐94 V‐0 rating. However, V‐0 rating results were only obtained for EVA when systems contain bis‐PM/ME: 4/1 and bis‐PM/ME/PER: 3/1/1. The char yield from decomposition of the IFR‐EVA and IFR‐PP has effects on the flame retardancy and antidripping behaviors of EVA and PP.
Effect of intumescent compositions on flammable properties of ethylene vinyl acetate and polypropylene
Giang, Thanhkieu (author) / Hoang, Dongquy / Kim, Jinhwan
Fire and materials ; 41
2017
Article (Journal)
English
ethylene vinyl acetate , Ethylene vinyl acetates , Fourier transforms , flame retardant , Melamine , Composition effects , intumescent , Polypropylene , Flame retardants , Nuclear magnetic resonance , Fire retardant chemicals , Incineration , Intumescent , Polypropylenes , Carbonization , Ethylene , Formulations , thermal properties , Vinyl acetate , Flammability , N.M.R , Ammonium , Thermogravimetric analysis , Nuclear magnetic resonance--NMR , Fire retardants , Fourier transformation , polypropylene , Acetic acid , Burning
British Library Online Contents | 2017
|British Library Online Contents | 1998
|