A platform for research: civil engineering, architecture and urbanism
Derivation of Bathymetry from High-resolution Optical Satellite Imagery and USV Sounding Data
Remote sensing bathymetry inversion can quickly obtain water depth data of large areas, but this process relies on a large number of in-situ depth data points. USV-based (Unmanned Surface Vehicle) technique can obtain the bathymetry data of shallow water where ordinary ships are inaccessible, but this technique is inefficient and generally only data along survey line can be collected. The combination of USV and high-resolution remote sensing provides a new solution for water depth surveying and mapping around an island. This paper focuses on the key techniques, using USV sounding data and GeoEye-1 multispectral remote sensing images covering the region of Wuzhizhou island in the experiment. The results show that the MAE (Mean Absolute Error) of USV sounding is 0.25 m, while the MRE (Mean Relative Error) is 1.41%, and the MRE of remote sensing bathymetry aided by USV sounding can be controlled within 20%. Errors are mainly from areas shallower than 5 m, and are also affected by the USV sounding position accuracy. It shows that it is feasible to combine the USV sounding and high-resolution remote sensing bathymetry, and this technique has broad application prospects in the field of bathymetry in large shallow areas.
Derivation of Bathymetry from High-resolution Optical Satellite Imagery and USV Sounding Data
Remote sensing bathymetry inversion can quickly obtain water depth data of large areas, but this process relies on a large number of in-situ depth data points. USV-based (Unmanned Surface Vehicle) technique can obtain the bathymetry data of shallow water where ordinary ships are inaccessible, but this technique is inefficient and generally only data along survey line can be collected. The combination of USV and high-resolution remote sensing provides a new solution for water depth surveying and mapping around an island. This paper focuses on the key techniques, using USV sounding data and GeoEye-1 multispectral remote sensing images covering the region of Wuzhizhou island in the experiment. The results show that the MAE (Mean Absolute Error) of USV sounding is 0.25 m, while the MRE (Mean Relative Error) is 1.41%, and the MRE of remote sensing bathymetry aided by USV sounding can be controlled within 20%. Errors are mainly from areas shallower than 5 m, and are also affected by the USV sounding position accuracy. It shows that it is feasible to combine the USV sounding and high-resolution remote sensing bathymetry, and this technique has broad application prospects in the field of bathymetry in large shallow areas.
Derivation of Bathymetry from High-resolution Optical Satellite Imagery and USV Sounding Data
Liang, Jian (author) / Zhang, Jie / Ma, Yi / Zhang, Chuan-Yin
Marine geodesy ; 40
2017
Article (Journal)
English
High resolution optical satellite imagery
TIBKAT | 2012
|Data Acquisition through Emerging High-Resolution Satellite Imagery
British Library Online Contents | 1998
|Foreword - Mapping from High-resolution Satellite Imagery
Online Contents | 2006
|Data Acquisition through Emerging High-Resolution Satellite Imagery
Online Contents | 1998
|