A platform for research: civil engineering, architecture and urbanism
InSAR Time-Series Estimation of the Ionospheric Phase Delay: An Extension of the Split Range-Spectrum Technique
Repeat pass interferometric synthetic aperture radar (InSAR) observations may be significantly impacted by the propagation delay of the microwave signal through the ionosphere, which is commonly referred to as ionospheric delay. The dispersive character of the ionosphere at microwave frequencies allows one to estimate the ionospheric delay from InSAR data through a split range-spectrum technique. Here, we extend the existing split range-spectrum technique to InSAR time-series. We present an algorithm for estimating a time-series of ionospheric phase delay that is useful for correcting InSAR time-series of ground surface displacement or for evaluating the spatial and temporal variations of the ionosphere's total electron content (TEC). Experimental results from stacks of L-band SAR data acquired by the ALOS-1 Japanese satellite show significant ionospheric phase delay equivalent to 2 m of the temporal variation of InSAR time-series along 445 km in Chile, a region at low latitudes where large TEC variations are common. The observed delay is significantly smaller, with a maximum of 10 cm over 160 km, in California. The estimation and correction of ionospheric delay reduces the temporal variation of the InSAR time-series to centimeter levels in Chile. The ionospheric delay correction of the InSAR time-series reveals earthquake-induced ground displacement, which otherwise could not be detected. A comparison with independent GPS time-series demonstrates an order of magnitude reduction in the root mean square difference between GPS and InSAR after correcting for ionospheric delay. The results show that the presented algorithm significantly improves the accuracy of InSAR time-series and should become a routine component of InSAR time-series analysis.
InSAR Time-Series Estimation of the Ionospheric Phase Delay: An Extension of the Split Range-Spectrum Technique
Repeat pass interferometric synthetic aperture radar (InSAR) observations may be significantly impacted by the propagation delay of the microwave signal through the ionosphere, which is commonly referred to as ionospheric delay. The dispersive character of the ionosphere at microwave frequencies allows one to estimate the ionospheric delay from InSAR data through a split range-spectrum technique. Here, we extend the existing split range-spectrum technique to InSAR time-series. We present an algorithm for estimating a time-series of ionospheric phase delay that is useful for correcting InSAR time-series of ground surface displacement or for evaluating the spatial and temporal variations of the ionosphere's total electron content (TEC). Experimental results from stacks of L-band SAR data acquired by the ALOS-1 Japanese satellite show significant ionospheric phase delay equivalent to 2 m of the temporal variation of InSAR time-series along 445 km in Chile, a region at low latitudes where large TEC variations are common. The observed delay is significantly smaller, with a maximum of 10 cm over 160 km, in California. The estimation and correction of ionospheric delay reduces the temporal variation of the InSAR time-series to centimeter levels in Chile. The ionospheric delay correction of the InSAR time-series reveals earthquake-induced ground displacement, which otherwise could not be detected. A comparison with independent GPS time-series demonstrates an order of magnitude reduction in the root mean square difference between GPS and InSAR after correcting for ionospheric delay. The results show that the presented algorithm significantly improves the accuracy of InSAR time-series and should become a routine component of InSAR time-series analysis.
InSAR Time-Series Estimation of the Ionospheric Phase Delay: An Extension of the Split Range-Spectrum Technique
Fattahi, Heresh (author) / Simons, Mark / Agram, Piyush
2017
Article (Journal)
English
Local classification TIB:
770/3710/5670
BKL:
38.03
Methoden und Techniken der Geowissenschaften
/
74.41
Luftaufnahmen, Photogrammetrie
Reducing ionospheric effects in InSAR data using accurate coregistration
Online Contents | 2014
|DEM Error Correction in InSAR Time Series
Online Contents | 2013
|Modeling of Ionospheric Time Delay Using Anisotropic IDW With Jackknife Technique
Online Contents | 2016
|Ionospheric Artifacts in Simultaneous L-Band InSAR and GPS Observations
Online Contents | 2012
|