A platform for research: civil engineering, architecture and urbanism
Two-Stage Reranking for Remote Sensing Image Retrieval
Image reranking is a popular postprocessing method for remote sensing image retrieval (RSIR), which aims at enhancing the initial retrieval performance. In general, it takes either users' opinions or the relationships between images into consideration to find an optimal reranked list based on the initial retrieved results. In this paper, we present a reranking method for improving RSIR, which is named two-stage reranking (TSR). Suppose the {k} -nearest neighbors of a query RS image have been obtained by the initial retrieval. The first step of our TSR is to edit these neighbors using the editing scheme. A handful of informative and representative RS images are selected by the active learning algorithm, and their binary labels are provided by the users relative to the query image. Then, a binary classifier is trained using the selected RS images and their labels to classify the rest of the neighbors. Finally, both classification results and rank information in the initial retrieval results are considered to decide which neighbor should be excluded. In the next step, the remaining RS images are reranked by the proposed reranking scheme, i.e., multisimilarity fusion reranking. Both the user's experience and image relationships are taken into account in TSR to ensure the performance of the reranking. The efficiency and the robustness of our method are validated by experiments conducted on two different types of RS images. Compared with the existing visual reranking approaches, our method achieves improved performance.
Two-Stage Reranking for Remote Sensing Image Retrieval
Image reranking is a popular postprocessing method for remote sensing image retrieval (RSIR), which aims at enhancing the initial retrieval performance. In general, it takes either users' opinions or the relationships between images into consideration to find an optimal reranked list based on the initial retrieved results. In this paper, we present a reranking method for improving RSIR, which is named two-stage reranking (TSR). Suppose the {k} -nearest neighbors of a query RS image have been obtained by the initial retrieval. The first step of our TSR is to edit these neighbors using the editing scheme. A handful of informative and representative RS images are selected by the active learning algorithm, and their binary labels are provided by the users relative to the query image. Then, a binary classifier is trained using the selected RS images and their labels to classify the rest of the neighbors. Finally, both classification results and rank information in the initial retrieval results are considered to decide which neighbor should be excluded. In the next step, the remaining RS images are reranked by the proposed reranking scheme, i.e., multisimilarity fusion reranking. Both the user's experience and image relationships are taken into account in TSR to ensure the performance of the reranking. The efficiency and the robustness of our method are validated by experiments conducted on two different types of RS images. Compared with the existing visual reranking approaches, our method achieves improved performance.
Two-Stage Reranking for Remote Sensing Image Retrieval
Tang, Xu (author) / Jiao, Licheng / Emery, William J / Liu, Fang / Zhang, Dan
2017
Article (Journal)
English
Local classification TIB:
770/3710/5670
BKL:
38.03
Methoden und Techniken der Geowissenschaften
/
74.41
Luftaufnahmen, Photogrammetrie
Remote Sensing Image Retrieval by Scene Semantic Matching
Online Contents | 2013
|Fuzzy Content-Based Image Retrieval for Oceanic Remote Sensing
Online Contents | 2014
|Remote Sensing Image Retrieval With Global Morphological Texture Descriptors
Online Contents | 2014
|Fuzzy content-based image retrieval for oceanic remote sensing
Online Contents | 2014
|Remote Sensing Image Retrieval With Global Morphological Texture Descriptors
Online Contents | 2014
|