A platform for research: civil engineering, architecture and urbanism
Fusion of Hyperspectral and LiDAR Data Using Sparse and Low-Rank Component Analysis
The availability of diverse data captured over the same region makes it possible to develop multisensor data fusion techniques to further improve the discrimination ability of classifiers. In this paper, a new sparse and low-rank technique is proposed for the fusion of hyperspectral and light detection and ranging (LiDAR)-derived features. The proposed fusion technique consists of two main steps. First, extinction profiles are used to extract spatial and elevation information from hyperspectral and LiDAR data, respectively. Then, the sparse and low-rank technique is utilized to estimate the low-rank fused features from the extracted ones that are eventually used to produce a final classification map. The proposed approach is evaluated over an urban data set captured over Houston, USA, and a rural one captured over Trento, Italy. Experimental results confirm that the proposed fusion technique outperforms the other techniques used in the experiments based on the classification accuracies obtained by random forest and support vector machine classifiers. Moreover, the proposed approach can effectively classify joint LiDAR and hyperspectral data in an ill-posed situation when only a limited number of training samples are available.
Fusion of Hyperspectral and LiDAR Data Using Sparse and Low-Rank Component Analysis
The availability of diverse data captured over the same region makes it possible to develop multisensor data fusion techniques to further improve the discrimination ability of classifiers. In this paper, a new sparse and low-rank technique is proposed for the fusion of hyperspectral and light detection and ranging (LiDAR)-derived features. The proposed fusion technique consists of two main steps. First, extinction profiles are used to extract spatial and elevation information from hyperspectral and LiDAR data, respectively. Then, the sparse and low-rank technique is utilized to estimate the low-rank fused features from the extracted ones that are eventually used to produce a final classification map. The proposed approach is evaluated over an urban data set captured over Houston, USA, and a rural one captured over Trento, Italy. Experimental results confirm that the proposed fusion technique outperforms the other techniques used in the experiments based on the classification accuracies obtained by random forest and support vector machine classifiers. Moreover, the proposed approach can effectively classify joint LiDAR and hyperspectral data in an ill-posed situation when only a limited number of training samples are available.
Fusion of Hyperspectral and LiDAR Data Using Sparse and Low-Rank Component Analysis
Rasti, Behnood (author) / Ghamisi, Pedram / Plaza, Javier / Plaza, Antonio
2017
Article (Journal)
English
Local classification TIB:
770/3710/5670
BKL:
38.03
Methoden und Techniken der Geowissenschaften
/
74.41
Luftaufnahmen, Photogrammetrie
Hyperspectral and LiDAR Fusion Using Extinction Profiles and Total Variation Component Analysis
Online Contents | 2017
|Urban tree species mapping using hyperspectral and lidar data fusion
Online Contents | 2014
|Sparse and Low-Rank Graph for Discriminant Analysis of Hyperspectral Imagery
Online Contents | 2016
|Discriminant Analysis of Hyperspectral Imagery Using Fast Kernel Sparse and Low-Rank Graph
Online Contents | 2017
|Hyperspectral Image Denoising via Sparse Representation and Low-Rank Constraint
Online Contents | 2015
|