A platform for research: civil engineering, architecture and urbanism
Performance evaluation of startup for a yeast membrane bioreactor (MBRy) treating landfill leachate
The startup process of a membrane bioreactor inoculated with yeast biomass (Saccharomyces cerevisiae) and used in the treatment of landfill leachate was evaluated. The yeast membrane bioreactor (MBRy) was inoculated with an exogenous inoculum, a granulated active dry commercial bakers' yeast. The MBRy was successfully started up with a progressive increase in the landfill leachate percentage in the MBRy feed and the use of Sabouraud Dextrose Broth. The membrane plays an important role in the startup phase because of its full biomass retention and removal of organic matter. MBRy is a suitable and promising process to treat recalcitrant landfill leachate. After the acclimation period, the COD and NH 3 removal efficiency reached values of 72 ± 3% and 39 ± 2% respectively. MBRy shows a low membrane-fouling potential. The membrane fouling was influenced by soluble microbial products, extracellular polymeric substances, sludge particle size, and colloidal dissolved organic carbon.
Performance evaluation of startup for a yeast membrane bioreactor (MBRy) treating landfill leachate
The startup process of a membrane bioreactor inoculated with yeast biomass (Saccharomyces cerevisiae) and used in the treatment of landfill leachate was evaluated. The yeast membrane bioreactor (MBRy) was inoculated with an exogenous inoculum, a granulated active dry commercial bakers' yeast. The MBRy was successfully started up with a progressive increase in the landfill leachate percentage in the MBRy feed and the use of Sabouraud Dextrose Broth. The membrane plays an important role in the startup phase because of its full biomass retention and removal of organic matter. MBRy is a suitable and promising process to treat recalcitrant landfill leachate. After the acclimation period, the COD and NH 3 removal efficiency reached values of 72 ± 3% and 39 ± 2% respectively. MBRy shows a low membrane-fouling potential. The membrane fouling was influenced by soluble microbial products, extracellular polymeric substances, sludge particle size, and colloidal dissolved organic carbon.
Performance evaluation of startup for a yeast membrane bioreactor (MBRy) treating landfill leachate
2017
Article (Journal)
English
Recht , Zeitschrift , USA , Datenverarbeitung
Performance evaluation of startup for a yeast membrane bioreactor (MBRy) treating landfill leachate
Taylor & Francis Verlag | 2017
|Landfill leachate treatment in assisted landfill bioreactor
Online Contents | 2006
|Taylor & Francis Verlag | 2011
|Pilot aerobic membrane bioreactor and nanofiltration for municipal landfill leachate treatment
Online Contents | 2016
|