A platform for research: civil engineering, architecture and urbanism
A Modified Three-Step Algorithm for TOPS and Sliding Spotlight SAR Data Processing
There are two challenges for efficient processing of both the sliding spotlight and terrain observation by progressive scans (TOPS) data using full-aperture algorithms. First, to overcome the Doppler spectrum aliasing, zero-padding is required for azimuth up sampling, increasing the computation burden; second, the azimuth deramp operation for avoiding synthetic aperture radar (SAR) image folding leads to azimuth time shift along the range dimension, and in turn the appearance of ghost targets and azimuth resolution reduction at the scene edge, especially in the wide-swath case. In this paper, a novel three-step algorithm is proposed for processing the sliding spotlight and TOPS data. In the first step, a modified derotation is derived in detail based on the chirp z-transform (CZT), avoiding zero-padding; then, the chirp scaling algorithm kernel is adopted for precise focusing in the second step; and in the third step, instead of the traditional range-independent deramp, a range-dependent deramp is applied to compensate for the time shift. Moreover, the SAR image geometry distortion caused by range-dependent deramp is corrected by employing a range-dependent CZT. Experimental results based on both simulated data and real data are provided to validate the proposed algorithm.
A Modified Three-Step Algorithm for TOPS and Sliding Spotlight SAR Data Processing
There are two challenges for efficient processing of both the sliding spotlight and terrain observation by progressive scans (TOPS) data using full-aperture algorithms. First, to overcome the Doppler spectrum aliasing, zero-padding is required for azimuth up sampling, increasing the computation burden; second, the azimuth deramp operation for avoiding synthetic aperture radar (SAR) image folding leads to azimuth time shift along the range dimension, and in turn the appearance of ghost targets and azimuth resolution reduction at the scene edge, especially in the wide-swath case. In this paper, a novel three-step algorithm is proposed for processing the sliding spotlight and TOPS data. In the first step, a modified derotation is derived in detail based on the chirp z-transform (CZT), avoiding zero-padding; then, the chirp scaling algorithm kernel is adopted for precise focusing in the second step; and in the third step, instead of the traditional range-independent deramp, a range-dependent deramp is applied to compensate for the time shift. Moreover, the SAR image geometry distortion caused by range-dependent deramp is corrected by employing a range-dependent CZT. Experimental results based on both simulated data and real data are provided to validate the proposed algorithm.
A Modified Three-Step Algorithm for TOPS and Sliding Spotlight SAR Data Processing
Yang, Wei (author) / Chen, Jie / Liu, Wei / Wang, Pengbo / Li, Chunsheng
2017
Article (Journal)
English
Local classification TIB:
770/3710/5670
BKL:
38.03
Methoden und Techniken der Geowissenschaften
/
74.41
Luftaufnahmen, Photogrammetrie
Processing of Sliding Spotlight and TOPS SAR Data Using Baseband Azimuth Scaling
Online Contents | 2010
|Multichannel - Processing of Multichannel Sliding Spotlight and TOPS Synthetic Aperture Radar Data
Online Contents | 2013
|Interferometric Processing of Sentinel-1 TOPS Data
Online Contents | 2016
|Interferometric Processing of Sentinel-1 TOPS Data
Online Contents | 2016
|Processing of Very High Resolution Spaceborne Sliding Spotlight SAR Data Using Velocity Scaling
Online Contents | 2015
|