A platform for research: civil engineering, architecture and urbanism
Floating rice-culture system for nutrient remediation and feed production in a eutrophic lake
The increased inputs of nutrients have been demonstrated to be a major contributing factor to the eutrophication of lakes and reservoirs which can lead to the production of harmful algal/cyanobacterial blooms and deleteriously affect the aesthetics of water-bodies. Floating plant-culture systems have been widely used for the ecological remediation of eutrophic water in a cost-effective manner. We investigated the applicability of Korean japonica rice variety 'Nampyeong' in a floating-culture system in a eutrophic lake for nutrient uptake and biomass production. Chemical and organic compound compositions were analyzed two times during the growth stages of the rice plant: 98 DAT (days after transplanting) and 165 DAT. Total nitrogen and phosphorus contributed around 1.36 and 0.15 (% dry weight), respectively, in rice plant components at 165 DAT. Crude protein, lipids, fiber and ash were 4.35, 1.91, 23.66 and 5.55 (% dry weight), respectively. In addition, microcystin levels in the rice plant components ranged from 0.0008 to 0.002 [mu]g/g and did not exceed the recommended tolerable limits. These results suggested that the developed floating rice-culture system showed a good potential as a holistic management approach in terms of nutrient reduction, rice production for further use as feed and for bloom control.
Floating rice-culture system for nutrient remediation and feed production in a eutrophic lake
The increased inputs of nutrients have been demonstrated to be a major contributing factor to the eutrophication of lakes and reservoirs which can lead to the production of harmful algal/cyanobacterial blooms and deleteriously affect the aesthetics of water-bodies. Floating plant-culture systems have been widely used for the ecological remediation of eutrophic water in a cost-effective manner. We investigated the applicability of Korean japonica rice variety 'Nampyeong' in a floating-culture system in a eutrophic lake for nutrient uptake and biomass production. Chemical and organic compound compositions were analyzed two times during the growth stages of the rice plant: 98 DAT (days after transplanting) and 165 DAT. Total nitrogen and phosphorus contributed around 1.36 and 0.15 (% dry weight), respectively, in rice plant components at 165 DAT. Crude protein, lipids, fiber and ash were 4.35, 1.91, 23.66 and 5.55 (% dry weight), respectively. In addition, microcystin levels in the rice plant components ranged from 0.0008 to 0.002 [mu]g/g and did not exceed the recommended tolerable limits. These results suggested that the developed floating rice-culture system showed a good potential as a holistic management approach in terms of nutrient reduction, rice production for further use as feed and for bloom control.
Floating rice-culture system for nutrient remediation and feed production in a eutrophic lake
Srivastava, Ankita (author) / Chun, Seong-Jun / Ko, So-Ra / Kim, Junhwan / Ahn, Chi-Yong / Oh, Hee-Mock
2017
Article (Journal)
English
BKL:
43.00
Practices for Eutrophic Shallow Lake Water Remediation and Restoration: A Critical Literature Review
DOAJ | 2023
|Nutrient Budgets, Dynamics and Storm Effects in a Eutrophic, Stratified Baltic Lake
Online Contents | 2003
|