A platform for research: civil engineering, architecture and urbanism
Identification of biphenyl 2, 3-dioxygenase and its catabolic role for phenazine degradation in Sphingobium yanoikuyae B1
Phenazines are important nitrogen-containing secondary metabolites that display a range of biological functionalities. However, these compounds have shown lethal effects on humans and, the fate of phenazine in the ecosystem remains uncertain. In this study, we investigated that Sphingobium yanoikuyae B1 could utilize phenazine as a sole carbon source for growth. Intermediate produced during phenazine degradation was purified and identified as 1, 2-dihydrogen 1, 2-dihydroxy phenazine. Biphenyl 2, 3-dioxygenase was determined to be the initial dioxygenase for phenazine degradation through gene cloning and whole cell transformation techniques. Phenazine was converted to 1, 2-dihydrogen 1, 2-dihydroxy phenazine through hydrogenation and hydroxylation, which then transformed to 2-hydroxy phenazine through spontaneous dehydration. ThebphA1fA2f, were evidenced to be the only genes encoding the initial dioxygenase for phenazine degradation. BphB (dihydrodiol dehydrogenase) and BphC (2,3-dihydroxybiphenyl 1,2-dioxygenase) did not exhibit any 1, 2-dihydrogen 1, 2-dihydroxy phenazine and 1, 2-dihydroxy phenazine degradation capability, suggesting no contribution in phenazine degradation. Phylogenetic analysis of the dioxygenases demonstrated enormous biodegradation potential in strain B1. In conclusion, this study opens up new possibilities in better understanding the phenazine degradation in the environment.
Identification of biphenyl 2, 3-dioxygenase and its catabolic role for phenazine degradation in Sphingobium yanoikuyae B1
Phenazines are important nitrogen-containing secondary metabolites that display a range of biological functionalities. However, these compounds have shown lethal effects on humans and, the fate of phenazine in the ecosystem remains uncertain. In this study, we investigated that Sphingobium yanoikuyae B1 could utilize phenazine as a sole carbon source for growth. Intermediate produced during phenazine degradation was purified and identified as 1, 2-dihydrogen 1, 2-dihydroxy phenazine. Biphenyl 2, 3-dioxygenase was determined to be the initial dioxygenase for phenazine degradation through gene cloning and whole cell transformation techniques. Phenazine was converted to 1, 2-dihydrogen 1, 2-dihydroxy phenazine through hydrogenation and hydroxylation, which then transformed to 2-hydroxy phenazine through spontaneous dehydration. ThebphA1fA2f, were evidenced to be the only genes encoding the initial dioxygenase for phenazine degradation. BphB (dihydrodiol dehydrogenase) and BphC (2,3-dihydroxybiphenyl 1,2-dioxygenase) did not exhibit any 1, 2-dihydrogen 1, 2-dihydroxy phenazine and 1, 2-dihydroxy phenazine degradation capability, suggesting no contribution in phenazine degradation. Phylogenetic analysis of the dioxygenases demonstrated enormous biodegradation potential in strain B1. In conclusion, this study opens up new possibilities in better understanding the phenazine degradation in the environment.
Identification of biphenyl 2, 3-dioxygenase and its catabolic role for phenazine degradation in Sphingobium yanoikuyae B1
Zhao, Qiang (author) / Bilal, Muhammad / Yue, Shengjie / Hu, Hongbo / Wang, Wei / Zhang, Xuehong
2017
Article (Journal)
English
BKL:
43.00
Benzo[a]pyrene degradation by Sphingomonas yanoikuyae JAR02
Online Contents | 2008
|DOAJ | 2023
|Multistep conversion of cresols by phenol hydroxylase and 2,3-dihydroxy-biphenyl 1,2-dioxygenase
Springer Verlag | 2013
|