A platform for research: civil engineering, architecture and urbanism
Rock–support interaction analysis based on numerical modelling
Abstract The use of yield in supports to control the final loading that develops upon a support system has been one of the most important deformation control techniques used by tunnelling engineers, both historically and currently. Successful use of this approach requires a thorough understanding of the process of rock–support interaction as it is an approach that can fail dramatically if incorrectly applied. There is a fine line between the yield support technique improving the conditions, and the approach resulting in the development of a large area of failed rock, which could ultimately be detrimental. The relationship between the support action and the rock has historically been studied using analytical approaches with the application of significant simplifying assumptions. This paper presents a new approach, where a state-of-the-art numerical model is run repeatedly to develop rock–support interaction curves. This has the advantage of allowing more realistic tunnel geometry, stress states and ground conditions to be simulated. It does, however, use the familiar output form of the relatively simple rock–support interaction curve as opposed to complex and voluminous graphics. Its disadvantage lies in the considerable number of computer runs required to develop the full solutions. Computer software has, however, been written to automate much of this process using a programming language within the modelling package. The analysis approach has been further improved by plotting not one rock–support interaction curve but a whole family of curves representing variations in the rock mass quality of the assumed ground, since this is the most variable of the input parameters for most tunnelling situations. This form of output allows engineers to study the practical range of yield they may require for their rock conditions and also to define at what rock mass quality they can expect the yielding approach to cease to be an effective strategy. This new approach has been presented on a test case history with idealized rock mass properties to illustrate the approach. However, it is an approach that can be specially tailored to any set of rock conditions, tunnel geometry or stress.
Rock–support interaction analysis based on numerical modelling
Abstract The use of yield in supports to control the final loading that develops upon a support system has been one of the most important deformation control techniques used by tunnelling engineers, both historically and currently. Successful use of this approach requires a thorough understanding of the process of rock–support interaction as it is an approach that can fail dramatically if incorrectly applied. There is a fine line between the yield support technique improving the conditions, and the approach resulting in the development of a large area of failed rock, which could ultimately be detrimental. The relationship between the support action and the rock has historically been studied using analytical approaches with the application of significant simplifying assumptions. This paper presents a new approach, where a state-of-the-art numerical model is run repeatedly to develop rock–support interaction curves. This has the advantage of allowing more realistic tunnel geometry, stress states and ground conditions to be simulated. It does, however, use the familiar output form of the relatively simple rock–support interaction curve as opposed to complex and voluminous graphics. Its disadvantage lies in the considerable number of computer runs required to develop the full solutions. Computer software has, however, been written to automate much of this process using a programming language within the modelling package. The analysis approach has been further improved by plotting not one rock–support interaction curve but a whole family of curves representing variations in the rock mass quality of the assumed ground, since this is the most variable of the input parameters for most tunnelling situations. This form of output allows engineers to study the practical range of yield they may require for their rock conditions and also to define at what rock mass quality they can expect the yielding approach to cease to be an effective strategy. This new approach has been presented on a test case history with idealized rock mass properties to illustrate the approach. However, it is an approach that can be specially tailored to any set of rock conditions, tunnel geometry or stress.
Rock–support interaction analysis based on numerical modelling
Asef, M.R. (author) / Reddish, D.J. (author) / Lloyd, P.W. (author)
2000
Article (Journal)
English
British Library Conference Proceedings | 1995
|Analysis of rock-support interaction using numerical and multiple regression modeling
Online Contents | 2008
|Analysis of rock-support interaction using numerical and multiple regression modeling
British Library Online Contents | 2008
|Numerical Modeling of Rock-Support Interaction Under Squeezing Conditions
Springer Verlag | 2021
|