A platform for research: civil engineering, architecture and urbanism
Performance of a Pier Group Foundation in Swelling Rock
Abstract Foundations on claystone with swell potential may experience upward movement and failure. In this case study, the cause of 58 mm upward movement of drilled-in piers is analyzed using survey data, extensometer readings, and moisture content monitoring of claystone at the site. Laboratory swell tests were conducted to characterize the swelling characteristics of the weathered rock. A swell potential analysis for the pier group foundations is presented. The interaction of the pier group with the swelling rock is considered in analyzing the initiation of the upward movement. Furthermore, a novel inverse analysis method is presented to integrate the laboratory swell test results and numerical modeling to identify the representative swell pressures acting on the pier group as well as upward movement of the pier system. The numerical analysis indicates that the studied pier system is expected to have 135 mm heave and its rate of upward movement is compared with field observations. The behavior of the pier group foundation in swelling rock under various pier spacings and superstructure pressures shows that the uplift is considerably less for piers with smaller center-to-center spacing. The results of pier group numerical modeling provide the correlation of upward deformation changes due to center-to-center spacing of the piers, pier diameters and superstructure pressures.
Performance of a Pier Group Foundation in Swelling Rock
Abstract Foundations on claystone with swell potential may experience upward movement and failure. In this case study, the cause of 58 mm upward movement of drilled-in piers is analyzed using survey data, extensometer readings, and moisture content monitoring of claystone at the site. Laboratory swell tests were conducted to characterize the swelling characteristics of the weathered rock. A swell potential analysis for the pier group foundations is presented. The interaction of the pier group with the swelling rock is considered in analyzing the initiation of the upward movement. Furthermore, a novel inverse analysis method is presented to integrate the laboratory swell test results and numerical modeling to identify the representative swell pressures acting on the pier group as well as upward movement of the pier system. The numerical analysis indicates that the studied pier system is expected to have 135 mm heave and its rate of upward movement is compared with field observations. The behavior of the pier group foundation in swelling rock under various pier spacings and superstructure pressures shows that the uplift is considerably less for piers with smaller center-to-center spacing. The results of pier group numerical modeling provide the correlation of upward deformation changes due to center-to-center spacing of the piers, pier diameters and superstructure pressures.
Performance of a Pier Group Foundation in Swelling Rock
Marino, Gennaro (author) / Osouli, Abdolreza (author) / Zamiran, Siavash (author) / Shafii, Iman (author)
2016
Article (Journal)
English
Performance of a Pier Group Foundation in Swelling Rock
British Library Online Contents | 2017
|Performance of a Pier Group Foundation in Swelling Rock
Online Contents | 2016
|Masonry pier. Failure of a pier and a rock foundation
Engineering Index Backfile | 1894
|Rock foundation, failure of a masonry pier and a foundation
Engineering Index Backfile | 1894
|