A platform for research: civil engineering, architecture and urbanism
Optimum design of cold-formed steel portal frame buildings including joint effects and secondary members
Abstract In steel portal frames, cold-formed steel channel sections are increasingly used as the primary framing components, in addition to the secondary members e.g. purlins and side rails. For such framing systems, the stiffness of the joints at the eaves and apex affects the bending moment distribution, as well as the frame deflections. This paper investigates the influence of two joint configurations having full rigidity and semi-rigidity, respectively, on the optimum design of cold-formed steel portal frames. A real-coded genetic algorithm is used to search for the most cost-effective design. It is shown that through incorporating joint effects explicitly into the design process, a more appropriate balance between the joints and the member properties can be obtained, thus optimizing material use. The study then investigates the effect of secondary members on the optimum design. It is shown that incorporating the secondary members is important for portal frames having spans shorter than 12 m. For example, for a frame spacing less than 6 m, the material cost of the primary members can be reduced by up to 15%.
Optimum design of cold-formed steel portal frame buildings including joint effects and secondary members
Abstract In steel portal frames, cold-formed steel channel sections are increasingly used as the primary framing components, in addition to the secondary members e.g. purlins and side rails. For such framing systems, the stiffness of the joints at the eaves and apex affects the bending moment distribution, as well as the frame deflections. This paper investigates the influence of two joint configurations having full rigidity and semi-rigidity, respectively, on the optimum design of cold-formed steel portal frames. A real-coded genetic algorithm is used to search for the most cost-effective design. It is shown that through incorporating joint effects explicitly into the design process, a more appropriate balance between the joints and the member properties can be obtained, thus optimizing material use. The study then investigates the effect of secondary members on the optimum design. It is shown that incorporating the secondary members is important for portal frames having spans shorter than 12 m. For example, for a frame spacing less than 6 m, the material cost of the primary members can be reduced by up to 15%.
Optimum design of cold-formed steel portal frame buildings including joint effects and secondary members
Phan, Duoc T. (author) / Lim, James B. P. (author) / Tanyimboh, Tiku T. (author) / Sha, Wei (author)
2017
Article (Journal)
English
Optimum Joint Detail for a General Cold-Formed Steel Portal Frame
Online Contents | 2012
|Optimum Joint Detail for a General Cold-Formed Steel Portal Frame
SAGE Publications | 2012
|Design of the apex joint of a cold-formed steel portal frame
Tema Archive | 2003
|Cold-Formed Steel Portal Frame Joints: A Review
British Library Conference Proceedings | 2009
|