A platform for research: civil engineering, architecture and urbanism
Dripper Discharge Rates and the Hydraulic Properties of the Soil
Abstract The hydraulic properties of soils areneeded in predicting runoff and erosion,irrigation design and general transportphenomena in the soil. Theoretical toolshave been developed to estimate them frommeasurements of water distribution near apoint source assuming stable homogeneousand isotropic soils. Soil wetting rate andits interaction with soil texture was notconsidered in these analyses even thoughreports indicated that a high wetting ratedisintegrates soil's aggregates and isassociated with deterioration of soilstructure and reduction of the hydraulicconductivity (HC) and infiltration rates(IR) especially in clay soils. Objectiveswere to: (i) show how IR of a soil, wettedfrom a point source, are affected by thedischarge rate of the dripper. (ii)identify the mechanisms responsible forthis reduction and (iii) investigate theeffect of emitter's discharge on theresultant HC of sand,loam and clay. Werelated the reduction of IR under highemitter discharge to the breakdown of soilaggregates by fast wetting anddeterioration of the hydraulic propertiesof soils, (the pedological mechanism,).Results show that relative to the idealstable soil the steady IR decreased withan increase in the discharge rate of thedripper. The resultant saturated HC($ K_{s} $) was, erroneously, negative forclay and loamy soils but not for sand.When determining hydraulic properties ofsoils with a point source, low dischargesshould produce better results especiallyin soils with medium to high clay content.
Dripper Discharge Rates and the Hydraulic Properties of the Soil
Abstract The hydraulic properties of soils areneeded in predicting runoff and erosion,irrigation design and general transportphenomena in the soil. Theoretical toolshave been developed to estimate them frommeasurements of water distribution near apoint source assuming stable homogeneousand isotropic soils. Soil wetting rate andits interaction with soil texture was notconsidered in these analyses even thoughreports indicated that a high wetting ratedisintegrates soil's aggregates and isassociated with deterioration of soilstructure and reduction of the hydraulicconductivity (HC) and infiltration rates(IR) especially in clay soils. Objectiveswere to: (i) show how IR of a soil, wettedfrom a point source, are affected by thedischarge rate of the dripper. (ii)identify the mechanisms responsible forthis reduction and (iii) investigate theeffect of emitter's discharge on theresultant HC of sand,loam and clay. Werelated the reduction of IR under highemitter discharge to the breakdown of soilaggregates by fast wetting anddeterioration of the hydraulic propertiesof soils, (the pedological mechanism,).Results show that relative to the idealstable soil the steady IR decreased withan increase in the discharge rate of thedripper. The resultant saturated HC($ K_{s} $) was, erroneously, negative forclay and loamy soils but not for sand.When determining hydraulic properties ofsoils with a point source, low dischargesshould produce better results especiallyin soils with medium to high clay content.
Dripper Discharge Rates and the Hydraulic Properties of the Soil
Ben-Asher, J. (author) / Yano, T. (author) / Shainberg, I. (author)
2003
Article (Journal)
English
Dripper Performance Applying Treated Swine Effluent
TIBKAT | 2019
|British Library Conference Proceedings | 2001
|British Library Online Contents | 2006
|