A platform for research: civil engineering, architecture and urbanism
Farm salinity appraisal with water reuse
Abstract The need for a better understanding of the interaction between irrigation practices and the elevation and quality of the water table is of paramount importance for developing irrigation management strategies to ameliorate the regional problems of elevated saline water tables in the San Joaquin Valley, California. An area of approximately 3000 ha which includes portions of the Diener Ranch and the adjacent University of California, Westside Research and Extension Center, located south of Five Points in the Westlands Water District on the west side of the San Joaquin Valley was chosen for extensive field measurements. Field work consisted of four main activities namely, field instrumentation, collection of records of field activities, periodic data collection, and analyses of field data. Field measurements of water table carried out during 1994 indicated that the water table elevation was sensitive to the irrigation practices. There was a general increase in the area with a water table close to the surface during the irrigation season, and a return to water table elevations similar to the starting conditions at the end of the season. During the study period, the surface water quality deteriorated more in areas irrigated with reuse water and persisted through the end of the season. Depth averaged electrical conductivity for the study area over 6.5 m decreased between December 1993 and December 1994. Vertical hydraulic gradients in the saturated zone, were found to be an order of magnitude larger than horizontal gradients. The direction of vertical gradients changed, with downward gradients following pre-irrigations and upward gradients later in the season, when crop water requirements increased. Based on the results of the field study, it can be concluded that the irrigation management practices have a direct effect on local water table response as well as on water quality. Therefore, irrigation practices that promote less deep percolation losses may be helpful in controlling the water table rise.
Farm salinity appraisal with water reuse
Abstract The need for a better understanding of the interaction between irrigation practices and the elevation and quality of the water table is of paramount importance for developing irrigation management strategies to ameliorate the regional problems of elevated saline water tables in the San Joaquin Valley, California. An area of approximately 3000 ha which includes portions of the Diener Ranch and the adjacent University of California, Westside Research and Extension Center, located south of Five Points in the Westlands Water District on the west side of the San Joaquin Valley was chosen for extensive field measurements. Field work consisted of four main activities namely, field instrumentation, collection of records of field activities, periodic data collection, and analyses of field data. Field measurements of water table carried out during 1994 indicated that the water table elevation was sensitive to the irrigation practices. There was a general increase in the area with a water table close to the surface during the irrigation season, and a return to water table elevations similar to the starting conditions at the end of the season. During the study period, the surface water quality deteriorated more in areas irrigated with reuse water and persisted through the end of the season. Depth averaged electrical conductivity for the study area over 6.5 m decreased between December 1993 and December 1994. Vertical hydraulic gradients in the saturated zone, were found to be an order of magnitude larger than horizontal gradients. The direction of vertical gradients changed, with downward gradients following pre-irrigations and upward gradients later in the season, when crop water requirements increased. Based on the results of the field study, it can be concluded that the irrigation management practices have a direct effect on local water table response as well as on water quality. Therefore, irrigation practices that promote less deep percolation losses may be helpful in controlling the water table rise.
Farm salinity appraisal with water reuse
Tarboton, K.C. (author) / Wallender, W.W. (author) / Raghuwanshi, N.S. (author)
2004
Article (Journal)
English
Sanitary Engineering Appraisal of Waste Water Reuse
Wiley | 1959
|Membrane assisted technology appraisal for water reuse applications in South Africa
Online Contents | 2016
|Membrane assisted technology appraisal for water reuse applications in South Africa
Taylor & Francis Verlag | 2016
|Membrane assisted technology appraisal for water reuse applications in South Africa
Online Contents | 2015
|The Environmental Appraisal of Reuse of Waste Concrete
British Library Conference Proceedings | 2009
|