A platform for research: civil engineering, architecture and urbanism
Calibrating aggregate travel demand models with traffic counts: Estimators and statistical performance
Abstract Traffic counts on network links constitute an information source on travel demand which is easy to collect, cheap and repeatable. Many models proposed in recent years deal with the use of traffic counts to estimate Origin/Destination (O/D) trip matrices under different assumptions on the type of "a-priori" information available on the demand (surveys, outdated estimates, models, etc.) and the type of network and assignment mapping (see Cascetta & Nguyen 1988). Less attention has been paid to the possibility of using traffic counts to estimate the parameters of demand models. In this case most of the proposed methods are relative to particular demand model structures (e.g. gravity-type) and the statistical analysis of estimator performance is not thoroughly carried out. In this paper a general statistical framework defining Maximum Likelihood, Non Linear Generalized Least Squares (NGLS) and Bayes estimators of aggregated demand model parameters combining counts-based information with other sources (sample or a priori estimates) is proposed first, thus extending and generalizing previous work by the authors (Cascetta & Russo 1992). Subsequently a solution algorithm of the projected-gradient type is proposed for the NGLS estimator given its convenient theoretical and computational properties. The algorithm is based on a combination of analytical/numerical derivates in order to make the estimator applicable to general demand models. Statistical performances of the proposed estimators are evaluated on a small test network through a Monte Carlo method by repeatedly sampling "starting estimates" of the (known) parameters of a generation/distribution/modal split/assignment system of models. Tests were carried out assuming different levels of "quality" of starting estimates and numbers of available counts. Finally NGLS estimator was applied to the calibration of the described model system on the network of a real medium-size Italian town using real counts with very satisfactory results in terms of both parameter values and counted flows reproduction.
Calibrating aggregate travel demand models with traffic counts: Estimators and statistical performance
Abstract Traffic counts on network links constitute an information source on travel demand which is easy to collect, cheap and repeatable. Many models proposed in recent years deal with the use of traffic counts to estimate Origin/Destination (O/D) trip matrices under different assumptions on the type of "a-priori" information available on the demand (surveys, outdated estimates, models, etc.) and the type of network and assignment mapping (see Cascetta & Nguyen 1988). Less attention has been paid to the possibility of using traffic counts to estimate the parameters of demand models. In this case most of the proposed methods are relative to particular demand model structures (e.g. gravity-type) and the statistical analysis of estimator performance is not thoroughly carried out. In this paper a general statistical framework defining Maximum Likelihood, Non Linear Generalized Least Squares (NGLS) and Bayes estimators of aggregated demand model parameters combining counts-based information with other sources (sample or a priori estimates) is proposed first, thus extending and generalizing previous work by the authors (Cascetta & Russo 1992). Subsequently a solution algorithm of the projected-gradient type is proposed for the NGLS estimator given its convenient theoretical and computational properties. The algorithm is based on a combination of analytical/numerical derivates in order to make the estimator applicable to general demand models. Statistical performances of the proposed estimators are evaluated on a small test network through a Monte Carlo method by repeatedly sampling "starting estimates" of the (known) parameters of a generation/distribution/modal split/assignment system of models. Tests were carried out assuming different levels of "quality" of starting estimates and numbers of available counts. Finally NGLS estimator was applied to the calibration of the described model system on the network of a real medium-size Italian town using real counts with very satisfactory results in terms of both parameter values and counted flows reproduction.
Calibrating aggregate travel demand models with traffic counts: Estimators and statistical performance
Cascetta, Ennio (author) / Russo, Francesco (author)
Transportation ; 24
1997
Article (Journal)
English
Effects of Data Accuracy in Aggregate Travel Demand Models Calibration with Traffic Counts
Springer Verlag | 2001
|Bottleneck and Queuing Analysis: Calibrating Volume-Delay Functions of Travel Demand Models
British Library Online Contents | 2011
|Transport demand model estimation from traffic counts
Online Contents | 1989
|Simultaneous Travel Model Estimation from Survey Data and Traffic Counts
British Library Online Contents | 2015
|Statistical Considerations in Calibrating Performance Models with Field Data
British Library Conference Proceedings | 2000
|