A platform for research: civil engineering, architecture and urbanism
Modeling strategy for jointed rock masses reinforced by rock bolts in tunneling practice
Abstract This paper deals with the modeling of jointed rock masses reinforced by rock bolts. It is well known that rock bolts are extremely effective in reinforcing jointed rocks. However, if a continuum approach is adopted for modeling jointed rock masses, it is often misleading to evaluate the effectiveness of the rock bolts by numerical analyses such as the finite element method. This may be due to the fact that since no more joints exist in the continuum, the effectiveness of the rock bolts in constraining the relative displacements along the joints cannot be evaluated properly. In order to investigate the reinforcement effect of rock bolts, physical model tests were performed in the laboratory. The test results revealed that jointed rock masses should be modeled as an equivalent continuum after the installation of rock bolts and that the mechanical parameters of the equivalent continuum should be evaluated by considering the reinforcement effect of the rock bolts. Therefore, the values of the mechanical parameters differ from place to place in accordance with the relation between joint orientation and rock bolt direction, even though joint systems are homogeneous. In conclusion, in the continuum approach for modeling jointed rock masses, it should be emphasized that rock bolts and jointed rock masses should not be modeled separately but should be modeled simultaneously by considering the reinforcement effect of the rock bolts in constraining joint movement. The modeling of shotcrete reinforced by steel ribs is also discussed in comparison to the modeling by rock bolts.
Modeling strategy for jointed rock masses reinforced by rock bolts in tunneling practice
Abstract This paper deals with the modeling of jointed rock masses reinforced by rock bolts. It is well known that rock bolts are extremely effective in reinforcing jointed rocks. However, if a continuum approach is adopted for modeling jointed rock masses, it is often misleading to evaluate the effectiveness of the rock bolts by numerical analyses such as the finite element method. This may be due to the fact that since no more joints exist in the continuum, the effectiveness of the rock bolts in constraining the relative displacements along the joints cannot be evaluated properly. In order to investigate the reinforcement effect of rock bolts, physical model tests were performed in the laboratory. The test results revealed that jointed rock masses should be modeled as an equivalent continuum after the installation of rock bolts and that the mechanical parameters of the equivalent continuum should be evaluated by considering the reinforcement effect of the rock bolts. Therefore, the values of the mechanical parameters differ from place to place in accordance with the relation between joint orientation and rock bolt direction, even though joint systems are homogeneous. In conclusion, in the continuum approach for modeling jointed rock masses, it should be emphasized that rock bolts and jointed rock masses should not be modeled separately but should be modeled simultaneously by considering the reinforcement effect of the rock bolts in constraining joint movement. The modeling of shotcrete reinforced by steel ribs is also discussed in comparison to the modeling by rock bolts.
Modeling strategy for jointed rock masses reinforced by rock bolts in tunneling practice
Sakurai, Shunsuke (author)
Acta Geotechnica ; 5
2010
Article (Journal)
English
BKL:
56.20
Ingenieurgeologie, Bodenmechanik
/
56.20$jIngenieurgeologie$jBodenmechanik
DDC:
624.15105
Modeling strategy for jointed rock masses reinforced by rock bolts in tunneling practice
Springer Verlag | 2010
|Modeling strategy for jointed rock masses reinforced by rock bolts in tunneling practice
British Library Online Contents | 2010
|Modeling of Jointed Rock Masses Reinforced by Rock Bolts
British Library Online Contents | 1992
|A Design Method of Rock Bolts in Jointed Rock Masses
British Library Online Contents | 1996
|Impact of Rock Bolts in Jointed Rock
British Library Conference Proceedings | 2002
|