A platform for research: civil engineering, architecture and urbanism
Approaches to determine the constriction size distribution for understanding filtration phenomena in granular materials
Abstract Granular filters in hydraulically loaded earth structures constitute the ultimate barrier for the blockage of small particles moving through the structure regularly or along concentrated leaks. If filters are inefficient to block small particles several types of internal erosion may be initiated. A corresponding phenomenon appears during suffusion in a wide graded hydraulically loaded fill, when fine particles, embedded in the pore structure of a soil skeleton, are washed out. The cumulative constriction size distribution (CSD) is physically the key property that qualifies the soils retention capability as like a spatial acting sieve. Constrictions are defined as the narrowest sections of channels between larger volumes (pores) within the pore network of granular material, and they are the main obstacles for a small particle to overcome when flowing along pathways. At least three different approaches are available to determine and compute the CSD, i.e., experimental, numerical and analytical methods. The purpose of this review is to present and discuss these methods pointing out their limits, advantages and significance related to internal erosion phenomena.
Approaches to determine the constriction size distribution for understanding filtration phenomena in granular materials
Abstract Granular filters in hydraulically loaded earth structures constitute the ultimate barrier for the blockage of small particles moving through the structure regularly or along concentrated leaks. If filters are inefficient to block small particles several types of internal erosion may be initiated. A corresponding phenomenon appears during suffusion in a wide graded hydraulically loaded fill, when fine particles, embedded in the pore structure of a soil skeleton, are washed out. The cumulative constriction size distribution (CSD) is physically the key property that qualifies the soils retention capability as like a spatial acting sieve. Constrictions are defined as the narrowest sections of channels between larger volumes (pores) within the pore network of granular material, and they are the main obstacles for a small particle to overcome when flowing along pathways. At least three different approaches are available to determine and compute the CSD, i.e., experimental, numerical and analytical methods. The purpose of this review is to present and discuss these methods pointing out their limits, advantages and significance related to internal erosion phenomena.
Approaches to determine the constriction size distribution for understanding filtration phenomena in granular materials
Vincens, E. (author) / Witt, K. J. (author) / Homberg, U. (author)
Acta Geotechnica ; 10
2014
Article (Journal)
English
BKL:
56.20
Ingenieurgeologie, Bodenmechanik
/
56.20$jIngenieurgeologie$jBodenmechanik
DDC:
624.15105
British Library Online Contents | 2015
|Determination of the constriction size distribution of granular filters by filtration tests
British Library Online Contents | 2013
|Constriction size distributions of granular filters: a numerical study
Online Contents | 2016
|Constriction size distributions of granular filters: a numerical study
Online Contents | 2016
|