A platform for research: civil engineering, architecture and urbanism
Dilative behavior of kaolinite under drained creep condition
Abstract This paper studies the dilative behavior of clay during drained creep along triaxial tests under constant mean effective stress, where the volumetric strain is caused by the sole deviatoric stress variation. Tests were conducted on a saturated reconstituted clayey material by the use of a GDS stress path control apparatus. The development of the axial and volumetric strains was studied with respect to time, stress level (SL) and overconsolidation ratio (OCR). Analysis of the results ascertained that both dilatancy and contractancy phenomena could occur during creep. The magnitude of the dilatancy/contractancy during creep was guided by the test conditions (SL and OCR), which specifically governed the direction of the volumetric strain variations. The position of the stress level vis-à-vis the different volumetric domains defined by monotonic triaxial tests in the (p′–q) plane controls the evolution of the volumetric creep strain. The failure of an overconsolidated specimen could be observed for a stress level located under the maximum strength envelope, but above the critical state line in the p′–q plane, accompanied by a significant dilative behavior during creep.
Dilative behavior of kaolinite under drained creep condition
Abstract This paper studies the dilative behavior of clay during drained creep along triaxial tests under constant mean effective stress, where the volumetric strain is caused by the sole deviatoric stress variation. Tests were conducted on a saturated reconstituted clayey material by the use of a GDS stress path control apparatus. The development of the axial and volumetric strains was studied with respect to time, stress level (SL) and overconsolidation ratio (OCR). Analysis of the results ascertained that both dilatancy and contractancy phenomena could occur during creep. The magnitude of the dilatancy/contractancy during creep was guided by the test conditions (SL and OCR), which specifically governed the direction of the volumetric strain variations. The position of the stress level vis-à-vis the different volumetric domains defined by monotonic triaxial tests in the (p′–q) plane controls the evolution of the volumetric creep strain. The failure of an overconsolidated specimen could be observed for a stress level located under the maximum strength envelope, but above the critical state line in the p′–q plane, accompanied by a significant dilative behavior during creep.
Dilative behavior of kaolinite under drained creep condition
Zhao, Dan (author) / Hattab, Mahdia (author) / Yin, Zhen-Yu (author) / Hicher, Pierre-Yves (author)
Acta Geotechnica ; 14
2018
Article (Journal)
English
BKL:
56.20
Ingenieurgeologie, Bodenmechanik
/
56.20$jIngenieurgeologie$jBodenmechanik
DDC:
624.15105
Dilative behavior of kaolinite under drained creep condition
Springer Verlag | 2018
|Drained Creep Behavior of Marine Clays
British Library Conference Proceedings | 1996
|Modeling of Dilative Shear Failure
British Library Online Contents | 1997
|Behavior of Dilative Sand Interfaces in Geotribology Framework
British Library Online Contents | 2002
|Nonlinear anisotropic modeling of dilative granular material behavior
British Library Conference Proceedings | 1997
|