A platform for research: civil engineering, architecture and urbanism
Estimating the Strength of Jointed Rock Masses
Abstract Determination of the strength of jointed rock masses is an important and challenging task in rock mechanics and rock engineering. In this article, the existing empirical methods for estimating the unconfined compressive strength of jointed rock masses are reviewed and evaluated, including the jointing index methods, the joint factor methods, and the methods based on rock mass classification. The review shows that different empirical methods may produce very different estimates. Since in many cases, rock quality designation (RQD) is the only information available for describing rock discontinuities, a new empirical relation is developed for estimating rock mass strength based on RQD. The newly developed empirical relation is applied to estimate the unconfined compressive strength of rock masses at six sites and the results are compared with those from the empirical methods based on rock mass classification. The estimated unconfined compressive strength values from the new empirical relation are essentially in the middle of the estimated values from the different empirical methods based on rock mass classification. Similar to the existing empirical methods, the newly developed relation is only approximate and should be used, with care, only for a first estimate of the unconfined compressive strength of rock masses. Recommendations are provided on how to apply the newly developed relation in combination with the existing empirical methods for estimating rock mass strength in practice.
Estimating the Strength of Jointed Rock Masses
Abstract Determination of the strength of jointed rock masses is an important and challenging task in rock mechanics and rock engineering. In this article, the existing empirical methods for estimating the unconfined compressive strength of jointed rock masses are reviewed and evaluated, including the jointing index methods, the joint factor methods, and the methods based on rock mass classification. The review shows that different empirical methods may produce very different estimates. Since in many cases, rock quality designation (RQD) is the only information available for describing rock discontinuities, a new empirical relation is developed for estimating rock mass strength based on RQD. The newly developed empirical relation is applied to estimate the unconfined compressive strength of rock masses at six sites and the results are compared with those from the empirical methods based on rock mass classification. The estimated unconfined compressive strength values from the new empirical relation are essentially in the middle of the estimated values from the different empirical methods based on rock mass classification. Similar to the existing empirical methods, the newly developed relation is only approximate and should be used, with care, only for a first estimate of the unconfined compressive strength of rock masses. Recommendations are provided on how to apply the newly developed relation in combination with the existing empirical methods for estimating rock mass strength in practice.
Estimating the Strength of Jointed Rock Masses
Zhang, Lianyang (author)
2009
Article (Journal)
English
Local classification TIB:
560/4815/6545
BKL:
38.58
Geomechanik
/
56.20
Ingenieurgeologie, Bodenmechanik
Estimating the Strength of Jointed Rock Masses
British Library Online Contents | 2010
|Estimating the Strength of Jointed Rock Masses
Online Contents | 2009
|Comments on “Estimating the Strength of Jointed Rock Masses” by Lianyang Zhang
Online Contents | 2011
|Comments on “Estimating the Strength of Jointed Rock Masses” by Lianyang Zhang
British Library Online Contents | 2011
|Comments on “Estimating the Strength of Jointed Rock Masses” by Lianyang Zhang
Online Contents | 2011
|