A platform for research: civil engineering, architecture and urbanism
Abstract The main objective of the present work is to present methods to obtain detailed surveys of the shape of the quasigeoid and of deflections of the vertical from the point of view of three-dimensional constituting and rigorous computing of the astrogeodetic network. The error of an astrogravimetric leveling line in the most general case, i.e., in the shape of a polygon has been estimated. This error can be tested and checked by comparison of gravimetric deflections of the vertical with astrogeodetic deflections, i.e., by computation of the error of astrogeodetic gravimetric deflection of the vertical. The astrogeodetic deflections of the vertical required for the horizontal angle correction in triangulation and traverse are easily obtained by interpolation. An example of astrogravimetric leveling demonstrates the possibility to carry out an astrogravimetric leveling with any required accuracy, for example, with the accuracy of ±1 ml/1000 km. In connection with height determination from PGS a procedure of constituting a well-distributed set of fiducial ground stations by using high-precision astrogravimetric methods together with millimeter-level accuracy astrogravimetric leveling to test various space systems observations has been suggested.
Abstract The main objective of the present work is to present methods to obtain detailed surveys of the shape of the quasigeoid and of deflections of the vertical from the point of view of three-dimensional constituting and rigorous computing of the astrogeodetic network. The error of an astrogravimetric leveling line in the most general case, i.e., in the shape of a polygon has been estimated. This error can be tested and checked by comparison of gravimetric deflections of the vertical with astrogeodetic deflections, i.e., by computation of the error of astrogeodetic gravimetric deflection of the vertical. The astrogeodetic deflections of the vertical required for the horizontal angle correction in triangulation and traverse are easily obtained by interpolation. An example of astrogravimetric leveling demonstrates the possibility to carry out an astrogravimetric leveling with any required accuracy, for example, with the accuracy of ±1 ml/1000 km. In connection with height determination from PGS a procedure of constituting a well-distributed set of fiducial ground stations by using high-precision astrogravimetric methods together with millimeter-level accuracy astrogravimetric leveling to test various space systems observations has been suggested.
Quasigeoid and deflection determinations by astrogravimetric methods
Ono, S. (author)
Bulletin géodésique ; 61
1987
Article (Journal)
English
Geodäsie , Geometrie , Geodynamik , Zeitschrift , Mathematik , Mineralogie
GOCE quasigeoid performance for Norway
Online Contents | 2013
|On the quasigeoid to geoid separation
Online Contents | 1995
|On the geoid–quasigeoid separation in mountain areas
Online Contents | 2009
|On the computation of the geoid–quasigeoid separation
Online Contents | 2011
|The new gravimetric quasigeoid model KTH08 over Sweden
British Library Online Contents | 2009
|