A platform for research: civil engineering, architecture and urbanism
External atmospheric corrections in geodetic very-long-baseline interferometry
Abstract. Three methods to correct for the atmospheric propagation delay in very-long-baseline interferometry (VLBI) measurements were investigated. In the analysis, the NASA R&D experiments from January 1993 to June 1995 were used. The methods were compared in correcting for the excess propagation delay due to water vapour, the “wet” delay, at one of the sites, the Onsala Space Observatory on the west coast of Sweden. The three methods were: (1) estimating the wet delay using the VLBI data themselves; (2) inferring the wet delay from water vapour radiometer (WVR) data, and (3) using independent estimates based on data from the global positioning system (GPS). Optimum elevation cutoff angles were $ 22^{∘} $ and $ 26^{∘} $ when using WVR and GPS data, respectively. The results were found to be similar in terms of reproducibility of the estimated baseline lengths. The shortest baselines tend to benefit from external measurements, whereas the lack of improvement in the longer baselines may be partly due to the large amount of data thrown away when removing observations at low elevation angles. Over a 2 week period of intensive measurements, the two methods using external data showed an overall improvement, for all baseline lengths, compared to the first method. This indicates that there are long-term systematic errors in the wet delay data estimated using WVR and GPS data.
External atmospheric corrections in geodetic very-long-baseline interferometry
Abstract. Three methods to correct for the atmospheric propagation delay in very-long-baseline interferometry (VLBI) measurements were investigated. In the analysis, the NASA R&D experiments from January 1993 to June 1995 were used. The methods were compared in correcting for the excess propagation delay due to water vapour, the “wet” delay, at one of the sites, the Onsala Space Observatory on the west coast of Sweden. The three methods were: (1) estimating the wet delay using the VLBI data themselves; (2) inferring the wet delay from water vapour radiometer (WVR) data, and (3) using independent estimates based on data from the global positioning system (GPS). Optimum elevation cutoff angles were $ 22^{∘} $ and $ 26^{∘} $ when using WVR and GPS data, respectively. The results were found to be similar in terms of reproducibility of the estimated baseline lengths. The shortest baselines tend to benefit from external measurements, whereas the lack of improvement in the longer baselines may be partly due to the large amount of data thrown away when removing observations at low elevation angles. Over a 2 week period of intensive measurements, the two methods using external data showed an overall improvement, for all baseline lengths, compared to the first method. This indicates that there are long-term systematic errors in the wet delay data estimated using WVR and GPS data.
External atmospheric corrections in geodetic very-long-baseline interferometry
Emardson, T. R. (author) / Elgered, G. (author) / Johansson, J. M. (author)
Journal of Geodesy ; 73
1999
Article (Journal)
English
BKL:
38.73
Geodäsie
Online Contents | 2021
|The contribution of Very Long Baseline Interferometry to ITRF2005
Online Contents | 2006
|