A platform for research: civil engineering, architecture and urbanism
Abstract. (i) A random simulation approach is proposed, which is at the centre of a numerical comparison of the performances of different GPS decorrelation methods. The most significant advantage of the approach is that it does not depend on nor favour any particular satellite–receiver geometry and weighting system. (ii) An inverse integer Cholesky decorrelation method is proposed, which will be shown to out-perform the integer Gaussian decorrelation and the Lenstra, Lenstra and Lovász (LLL) algorithm, and thus indicates that the integer Gaussian decorrelation is not the best decorrelation technique and that further improvement is possible. (iii) The performance study of the LLL algorithm is the first of its kind and the results have shown that the algorithm can indeed be used for decorrelation, but that it performs worse than the integer Gaussian decorrelation and the inverse integer Cholesky decorrelation. (iv) Simulations have also shown that no decorrelation techniques available to date can guarantee a smaller condition number, especially in the case of high dimension, although reducing the condition number is the goal of decorrelation.
Abstract. (i) A random simulation approach is proposed, which is at the centre of a numerical comparison of the performances of different GPS decorrelation methods. The most significant advantage of the approach is that it does not depend on nor favour any particular satellite–receiver geometry and weighting system. (ii) An inverse integer Cholesky decorrelation method is proposed, which will be shown to out-perform the integer Gaussian decorrelation and the Lenstra, Lenstra and Lovász (LLL) algorithm, and thus indicates that the integer Gaussian decorrelation is not the best decorrelation technique and that further improvement is possible. (iii) The performance study of the LLL algorithm is the first of its kind and the results have shown that the algorithm can indeed be used for decorrelation, but that it performs worse than the integer Gaussian decorrelation and the inverse integer Cholesky decorrelation. (iv) Simulations have also shown that no decorrelation techniques available to date can guarantee a smaller condition number, especially in the case of high dimension, although reducing the condition number is the goal of decorrelation.
Random simulation and GPS decorrelation
Xu, Peiliang (author)
Journal of Geodesy ; 75
2001
Article (Journal)
English
BKL:
38.73
Geodäsie
Temporal decorrelation-robust SAR tomography
Online Contents | 2014
|Temporal Decorrelation-Robust SAR Tomography
Online Contents | 2014
|A rapid algorithm for GPS ambiguity decorrelation
IEEE | 2002
|Measurement Noise Decorrelation in a Tracking System
British Library Online Contents | 1999
|Blind Speckle Decorrelation for SAR Image Despeckling
Online Contents | 2014
|