A platform for research: civil engineering, architecture and urbanism
An estimate of the errors in gravity ocean tide loading computations
Abstract. The error contributions within the ocean tide loading (OTL) convolution integral computation were determined to be able to estimate the numerical accuracy of the gravity OTL values. First, the comparison of four OTL programs by different authors (CONMODB, GOTIC2, NLOADF and OLFG/OLMPP) at ten globally distributed gravity stations using exactly the same input values shows discrepancies between 2% and 5%. A new program, called CARGA, was written that is able to reproduce the results of these programs to a level of 0.1%. This has given us the ability to state with certainty the cause of the discrepancies among the four programs. It is shown that by choosing an appropriate interpolation of the Green’s function, refinement of the integration mesh and a high-resolution coastline, an accuracy level of better than 1% can be obtained for stations in Europe. Besides this numerical accuracy, there are errors in the ocean tide model such as a 1% uncertainty in the mean value of the sea-water density and the lack of conservation of tidal water mass, which can produce offsets of around 0.04 μgal.
An estimate of the errors in gravity ocean tide loading computations
Abstract. The error contributions within the ocean tide loading (OTL) convolution integral computation were determined to be able to estimate the numerical accuracy of the gravity OTL values. First, the comparison of four OTL programs by different authors (CONMODB, GOTIC2, NLOADF and OLFG/OLMPP) at ten globally distributed gravity stations using exactly the same input values shows discrepancies between 2% and 5%. A new program, called CARGA, was written that is able to reproduce the results of these programs to a level of 0.1%. This has given us the ability to state with certainty the cause of the discrepancies among the four programs. It is shown that by choosing an appropriate interpolation of the Green’s function, refinement of the integration mesh and a high-resolution coastline, an accuracy level of better than 1% can be obtained for stations in Europe. Besides this numerical accuracy, there are errors in the ocean tide model such as a 1% uncertainty in the mean value of the sea-water density and the lack of conservation of tidal water mass, which can produce offsets of around 0.04 μgal.
An estimate of the errors in gravity ocean tide loading computations
Bos, M.S. (author) / Baker, T.F. (author)
Journal of Geodesy ; 79
2005
Article (Journal)
English
BKL:
38.73
Geodäsie
An estimate of the errors in gravity ocean tide loading computations
Online Contents | 2005
|Accuracy assessment of ocean tide loading computations for precise geodetic observations
UB Braunschweig | 2000
|INNOVATION: OCEAN TIDE LOADING AND GPS
Online Contents | 1995
|Validating ocean tide loading models using GPS
Online Contents | 2005
|