A platform for research: civil engineering, architecture and urbanism
The ellipsoidal correction to the Stokes kernel for precise geoid determination
Abstract Solving the geodetic boundary-value problem (GBVP) for the precise determination of the geoid requires proper use of the fundamental equation of physical geodesy as the boundary condition given on the geoid. The Stokes formula and kernel are the result of spherical approximation of this fundamental equation, which is a violation of the proper relation between the observed quantity (gravity anomaly) and the sought function (geoid). The violation is interpreted here as the improper formulation of the boundary condition, which implies the spherical Stokes kernel to be in error compared with the proper kernel of integral transformation. To remedy this error, two correction kernels to the Stokes kernel were derived: the first in both closed and spectral forms and the second only in spectral form. Contributions from the first correction kernel to the geoid across the globe were [−0.867 m, +1.002 m] in the low-frequency domain implied by the GRIM4-S4 purely satellite-derived geopotential model. It is a few centimeters, on average, in the high-frequency domain with some exceptions of a few meters in places of high topographical relief and sizable geological features in accordance with the EGM96 combined geopotential model. The contributions from the second correction kernel to the geoid are [−0.259 m, +0.217 m] and [−0.024 m, +0.023 m] in the low- and high-frequency domains, respectively.
The ellipsoidal correction to the Stokes kernel for precise geoid determination
Abstract Solving the geodetic boundary-value problem (GBVP) for the precise determination of the geoid requires proper use of the fundamental equation of physical geodesy as the boundary condition given on the geoid. The Stokes formula and kernel are the result of spherical approximation of this fundamental equation, which is a violation of the proper relation between the observed quantity (gravity anomaly) and the sought function (geoid). The violation is interpreted here as the improper formulation of the boundary condition, which implies the spherical Stokes kernel to be in error compared with the proper kernel of integral transformation. To remedy this error, two correction kernels to the Stokes kernel were derived: the first in both closed and spectral forms and the second only in spectral form. Contributions from the first correction kernel to the geoid across the globe were [−0.867 m, +1.002 m] in the low-frequency domain implied by the GRIM4-S4 purely satellite-derived geopotential model. It is a few centimeters, on average, in the high-frequency domain with some exceptions of a few meters in places of high topographical relief and sizable geological features in accordance with the EGM96 combined geopotential model. The contributions from the second correction kernel to the geoid are [−0.259 m, +0.217 m] and [−0.024 m, +0.023 m] in the low- and high-frequency domains, respectively.
The ellipsoidal correction to the Stokes kernel for precise geoid determination
Najafi-Alamdari, M. (author) / Emadi, S. R. (author) / Moghtased-Azar, K. (author)
Journal of Geodesy ; 80
2006
Article (Journal)
English
BKL:
38.73
Geodäsie
The ellipsoidal correction to the Stokes kernel for precise geoid determination
Online Contents | 2006
|Online Contents | 2004
|Online Contents | 2004
|On the ellipsoidal correction to the spherical Stokes solution of the gravimetric geoid
Online Contents | 2003
|