A platform for research: civil engineering, architecture and urbanism
The impact of errors in polar motion and nutation on UT1 determinations from VLBI Intensive observations
Abstract The earth’s phase of rotation, expressed as Universal Time UT1, is the most variable component of the earth’s rotation. Continuous monitoring of this quantity is realised through daily single-baseline VLBI observations which are interleaved with VLBI network observations. The accuracy of these single-baseline observations is established mainly through statistically determined standard deviations of the adjustment process although the results of these measurements are prone to systematic errors. The two major effects are caused by inaccuracies in the polar motion and nutation angles introduced as a priori values which propagate into the UT1 results. In this paper, we analyse the transfer of these components into UT1 depending on the two VLBI baselines being used for short duration UT1 monitoring. We develop transfer functions of the errors in polar motion and nutation into the UT1 estimates. Maximum values reach 30 [μs per milliarcsecond] which is quite large considering that observations of nutation offsets w.r.t. the state-of-the-art nutation model show deviations of as much as one milliarcsecond.
The impact of errors in polar motion and nutation on UT1 determinations from VLBI Intensive observations
Abstract The earth’s phase of rotation, expressed as Universal Time UT1, is the most variable component of the earth’s rotation. Continuous monitoring of this quantity is realised through daily single-baseline VLBI observations which are interleaved with VLBI network observations. The accuracy of these single-baseline observations is established mainly through statistically determined standard deviations of the adjustment process although the results of these measurements are prone to systematic errors. The two major effects are caused by inaccuracies in the polar motion and nutation angles introduced as a priori values which propagate into the UT1 results. In this paper, we analyse the transfer of these components into UT1 depending on the two VLBI baselines being used for short duration UT1 monitoring. We develop transfer functions of the errors in polar motion and nutation into the UT1 estimates. Maximum values reach 30 [μs per milliarcsecond] which is quite large considering that observations of nutation offsets w.r.t. the state-of-the-art nutation model show deviations of as much as one milliarcsecond.
The impact of errors in polar motion and nutation on UT1 determinations from VLBI Intensive observations
Nothnagel, Axel (author) / Schnell, Dorothee (author)
Journal of Geodesy ; 82
2008
Article (Journal)
English
BKL:
38.73
Geodäsie
Earth orientation determinations by short duration VLBI observations
Online Contents | 1994
|Quality aspects of short duration VLBI observations for UT1 determinations
UB Braunschweig | 2006
|