A platform for research: civil engineering, architecture and urbanism
On non-combinatorial weighted total least squares with inequality constraints
Abstract Observation systems known as errors-in-variables (EIV) models with model parameters estimated by total least squares (TLS) have been discussed for more than a century, though the terms EIV and TLS were coined much more recently. So far, it has only been shown that the inequality-constrained TLS (ICTLS) solution can be obtained by the combinatorial methods, assuming that the weight matrices of observations involved in the data vector and the data matrix are identity matrices. Although the previous works test all combinations of active sets or solution schemes in a clear way, some aspects have received little or no attention such as admissible weights, solution characteristics and numerical efficiency. Therefore, the aim of this study was to adjust the EIV model, subject to linear inequality constraints. In particular, (1) This work deals with a symmetrical positive-definite cofactor matrix that could otherwise be quite arbitrary. It also considers cross-correlations between cofactor matrices for the random coefficient matrix and the random observation vector. (2) From a theoretical perspective, we present first-order Karush–Kuhn–Tucker (KKT) necessary conditions and the second-order sufficient conditions of the inequality-constrained weighted TLS (ICWTLS) solution by analytical formulation. (3) From a numerical perspective, an active set method without combinatorial tests as well as a method based on sequential quadratic programming (SQP) is established. By way of applications, computational costs of the proposed algorithms are shown to be significantly lower than the currently existing ICTLS methods. It is also shown that the proposed methods can treat the ICWTLS problem in the case of more general weight matrices. Finally, we study the ICWTLS solution in terms of non-convex weighted TLS contours from a geometrical perspective.
On non-combinatorial weighted total least squares with inequality constraints
Abstract Observation systems known as errors-in-variables (EIV) models with model parameters estimated by total least squares (TLS) have been discussed for more than a century, though the terms EIV and TLS were coined much more recently. So far, it has only been shown that the inequality-constrained TLS (ICTLS) solution can be obtained by the combinatorial methods, assuming that the weight matrices of observations involved in the data vector and the data matrix are identity matrices. Although the previous works test all combinations of active sets or solution schemes in a clear way, some aspects have received little or no attention such as admissible weights, solution characteristics and numerical efficiency. Therefore, the aim of this study was to adjust the EIV model, subject to linear inequality constraints. In particular, (1) This work deals with a symmetrical positive-definite cofactor matrix that could otherwise be quite arbitrary. It also considers cross-correlations between cofactor matrices for the random coefficient matrix and the random observation vector. (2) From a theoretical perspective, we present first-order Karush–Kuhn–Tucker (KKT) necessary conditions and the second-order sufficient conditions of the inequality-constrained weighted TLS (ICWTLS) solution by analytical formulation. (3) From a numerical perspective, an active set method without combinatorial tests as well as a method based on sequential quadratic programming (SQP) is established. By way of applications, computational costs of the proposed algorithms are shown to be significantly lower than the currently existing ICTLS methods. It is also shown that the proposed methods can treat the ICWTLS problem in the case of more general weight matrices. Finally, we study the ICWTLS solution in terms of non-convex weighted TLS contours from a geometrical perspective.
On non-combinatorial weighted total least squares with inequality constraints
Fang, Xing (author)
Journal of Geodesy ; 88
2014
Article (Journal)
English
BKL:
38.73
Geodäsie
On non-combinatorial weighted total least squares with inequality constraints
Online Contents | 2014
|On weighted total least-squares with linear and quadratic constraints
Online Contents | 2012
|On weighted total least-squares with linear and quadratic constraints
Online Contents | 2012
|Recursive least squares with linear inequality constraints
Online Contents | 2014
|Recursive least squares with linear inequality constraints
Springer Verlag | 2014
|