A platform for research: civil engineering, architecture and urbanism
The impact of building massing on net-zero achievability for office buildings
Abstract The simultaneous impact of massing on both energy consumption and renewable energy production potential is studied by taking the case of office buildings in Washington D.C. A Baseline design with a square footprint is compared with eleven massing alternatives: three rectangular parallelepiped designs with aspect ratios of respectively 2, 3, and 4, along the east-west orientation; three rectangular parallelepiped designs with aspect ratios of respectively 2, 3, and 4, along the north-south orientation; two H-shaped designs; one cross-shaped design; and two pyramidal buildings with wall slopes of respectively 86° and 83°. With differences between the best performing massing alternative and the worst performing massing alternative of more than 10% in terms of energy consumption, and more than 20% in terms of renewable energy production, massing is found to significantly impact both energy use and energy production. Consideration of both energy consumption and renewable energy production potential suggests that, for temperate climates such as Washington D.C., buildings with H-shaped footprints, buildings with crossshaped footprints, and buildings with high aspect ratio footprints are preferable when targeting net-zero energy status.
The impact of building massing on net-zero achievability for office buildings
Abstract The simultaneous impact of massing on both energy consumption and renewable energy production potential is studied by taking the case of office buildings in Washington D.C. A Baseline design with a square footprint is compared with eleven massing alternatives: three rectangular parallelepiped designs with aspect ratios of respectively 2, 3, and 4, along the east-west orientation; three rectangular parallelepiped designs with aspect ratios of respectively 2, 3, and 4, along the north-south orientation; two H-shaped designs; one cross-shaped design; and two pyramidal buildings with wall slopes of respectively 86° and 83°. With differences between the best performing massing alternative and the worst performing massing alternative of more than 10% in terms of energy consumption, and more than 20% in terms of renewable energy production, massing is found to significantly impact both energy use and energy production. Consideration of both energy consumption and renewable energy production potential suggests that, for temperate climates such as Washington D.C., buildings with H-shaped footprints, buildings with crossshaped footprints, and buildings with high aspect ratio footprints are preferable when targeting net-zero energy status.
The impact of building massing on net-zero achievability for office buildings
Ndiaye, Demba (author)
Building Simulation ; 11
2017
Article (Journal)
English
DDC:
690.0113
The impact of building massing on net-zero achievability for office buildings
Springer Verlag | 2017
|Impact of Building Massing on Energy Efficient School Buildings
Springer Verlag | 2019
|Building massing and orientation studies
Tema Archive | 1984
|Building massing intelligent design tool
NTIS | 1992
|