A platform for research: civil engineering, architecture and urbanism
Seismic performance of viaducts with probabilistic method
Abstract Due to the uncertainty of both ground motions and structural capacity, it is necessary to consider the seismic performance of viaduct structures using the probabilistic method. The risk is quantified by a procedure on the basis of a numerical determination of the fragility curves. A group of ground motions, Large Magnitude-Short Distance Bin (LMSR-N), selected specially due to its response spectra, is accorded well with the corresponding spectra of the Chinese code for seismic design. The characteristic values of the curvature ductility factors for the serviceability and the damage control limit states are obtained, and two equations for estimating the characteristic values of the curvature ductility factors are developed through regression analysis. Then, the serviceability and damage control limit states were proposed. Three damage states were constituted according the results of the experiment by Pacific Earthquake Engineering Research (PEER) Center. The analytical fragility curves were obtained specifically, using both Capacity Spectrum Method (CSM) (non-linear static) analysis and Ineremental Dynamic Method (IDM) (non-linear dynamic) analysis, respectively, in this paper. The structural fragility curves developed by CSM method can help make the structural analysis simple and quick, avoiding the implementation of the dynamic response history analysis (RHA). Although the dynamic RHA requires a lot of complicated analysis for the structure, the results from RHA are reliable and accurate. Fragility curves are powerful tools for use in performance-based seismic bridge design.
Seismic performance of viaducts with probabilistic method
Abstract Due to the uncertainty of both ground motions and structural capacity, it is necessary to consider the seismic performance of viaduct structures using the probabilistic method. The risk is quantified by a procedure on the basis of a numerical determination of the fragility curves. A group of ground motions, Large Magnitude-Short Distance Bin (LMSR-N), selected specially due to its response spectra, is accorded well with the corresponding spectra of the Chinese code for seismic design. The characteristic values of the curvature ductility factors for the serviceability and the damage control limit states are obtained, and two equations for estimating the characteristic values of the curvature ductility factors are developed through regression analysis. Then, the serviceability and damage control limit states were proposed. Three damage states were constituted according the results of the experiment by Pacific Earthquake Engineering Research (PEER) Center. The analytical fragility curves were obtained specifically, using both Capacity Spectrum Method (CSM) (non-linear static) analysis and Ineremental Dynamic Method (IDM) (non-linear dynamic) analysis, respectively, in this paper. The structural fragility curves developed by CSM method can help make the structural analysis simple and quick, avoiding the implementation of the dynamic response history analysis (RHA). Although the dynamic RHA requires a lot of complicated analysis for the structure, the results from RHA are reliable and accurate. Fragility curves are powerful tools for use in performance-based seismic bridge design.
Seismic performance of viaducts with probabilistic method
Zhu, Xi (author) / Wang, Jianmin (author)
2007
Article (Journal)
English
BKL:
56.00$jBauwesen: Allgemeines
/
56.00
/
56.60
Architektur: Allgemeines
/
56.00
Bauwesen: Allgemeines
/
56.60
/
56.60$jArchitektur: Allgemeines
Seismic isolation of viaducts in Slovenia
British Library Conference Proceedings | 2002
|Inelastic Seismic Analysis of Reinforced Concrete Viaducts
British Library Online Contents | 2003
|Online Contents | 1995
|British Library Online Contents | 2007
|Seismic Retrofit of the Fourth Street & Riverside Viaducts with Micropiles
British Library Conference Proceedings | 1998
|