A platform for research: civil engineering, architecture and urbanism
A new height datum for Iran based on the combination of gravimetric and geometric geoid models
Abstract A new geoid model for Iran (IRG04) was computed based on the least squares modification of the Stokes formula. IRG04 was derived from the most recent gravity anomaly database, SRTM high resolution Digital Elevation Model (DEM) and GRACE GGM02 global geopotential model. In order to define a new height datum for Iran, we attempted to combine this high resolution gravimetric geoid model with GPS/levelling data using the corrective surface approach. The corrective surface was constructed from 224 GPS/levelling points and then evaluated with 35 independent points. Different interpolation techniques were tested for the creation of the corrective surface; among them the Kriging method was selected as it gave the smallest RMS and ‘noise level’ at the comparisons with GPS/levelling data. The RMS fit of the new combined geoid model versus the independent GPS/levelling data is 0.09 m, it is near four times better compared to the original gravimetric geoid model. The combined model should be more convenient and useful in definition of the new height reference surface, specifically in engineering and GPS/levelling projects.
A new height datum for Iran based on the combination of gravimetric and geometric geoid models
Abstract A new geoid model for Iran (IRG04) was computed based on the least squares modification of the Stokes formula. IRG04 was derived from the most recent gravity anomaly database, SRTM high resolution Digital Elevation Model (DEM) and GRACE GGM02 global geopotential model. In order to define a new height datum for Iran, we attempted to combine this high resolution gravimetric geoid model with GPS/levelling data using the corrective surface approach. The corrective surface was constructed from 224 GPS/levelling points and then evaluated with 35 independent points. Different interpolation techniques were tested for the creation of the corrective surface; among them the Kriging method was selected as it gave the smallest RMS and ‘noise level’ at the comparisons with GPS/levelling data. The RMS fit of the new combined geoid model versus the independent GPS/levelling data is 0.09 m, it is near four times better compared to the original gravimetric geoid model. The combined model should be more convenient and useful in definition of the new height reference surface, specifically in engineering and GPS/levelling projects.
A new height datum for Iran based on the combination of gravimetric and geometric geoid models
Kiamehr, R. (author)
2007
Article (Journal)
English
A Gravimetric Geoid Model as a Vertical Datum in Canada
Online Contents | 2006
|Fitting gravimetric geoid models to vertical deflections
Online Contents | 2008
|