A platform for research: civil engineering, architecture and urbanism
Modelling position dependent errors in gravimetric deflections of the vertical
Abstract Comparisons of gravimetric and astrogeodetic deflections of the vertical in the Australian region indicate that the former are affected by position dependent systematic errors, even after orientation onto the Australian Geodetic Datum. These are probably due to errors in the predicted mean anomalies for gravimetrically unsurveyed oceanic regions to the east, south and west of the continent. Deflection component residuals (astrogeodetic minus oriented gravimetric) at 83 control stations are made the observables in a set of observation equations, based on the Vening Meinesz equations, from which pseudocorrections to the mean anomalies for a set of arbitrarily selected surface elements are computed. These pseudocorrections compensate for prediction errors in much larger unsurveyed regions. Their effects on individual deflection components are calculated using the Vening Meinesz equations. Statistical tests indicate that pseudocorrections computed for four large offshore elements and six smaller elements in unsurveyed areas produce corrections to the gravimetric deflections which make the ξ and η components in seconds of arc consistent with normally distributed populations N (0.00, 0.$ 70^{2} $).
Modelling position dependent errors in gravimetric deflections of the vertical
Abstract Comparisons of gravimetric and astrogeodetic deflections of the vertical in the Australian region indicate that the former are affected by position dependent systematic errors, even after orientation onto the Australian Geodetic Datum. These are probably due to errors in the predicted mean anomalies for gravimetrically unsurveyed oceanic regions to the east, south and west of the continent. Deflection component residuals (astrogeodetic minus oriented gravimetric) at 83 control stations are made the observables in a set of observation equations, based on the Vening Meinesz equations, from which pseudocorrections to the mean anomalies for a set of arbitrarily selected surface elements are computed. These pseudocorrections compensate for prediction errors in much larger unsurveyed regions. Their effects on individual deflection components are calculated using the Vening Meinesz equations. Statistical tests indicate that pseudocorrections computed for four large offshore elements and six smaller elements in unsurveyed areas produce corrections to the gravimetric deflections which make the ξ and η components in seconds of arc consistent with normally distributed populations N (0.00, 0.$ 70^{2} $).
Modelling position dependent errors in gravimetric deflections of the vertical
Clarke, F. L. (author)
Bulletin Géodésique ; 55
1981
Article (Journal)
Electronic Resource
English
Fitting gravimetric geoid models to vertical deflections
Online Contents | 2008
|Fitting gravimetric geoid models to vertical deflections
Online Contents | 2008
|Gravimetric interpolation of deflections of the vertical by electronic computer
Online Contents | 1966
|Accuracy of gravimetric deflections of the vertical and optimization of gravity networks
Online Contents | 1985
|