A platform for research: civil engineering, architecture and urbanism
From kinematical geodesy to inertial positioning
Abstract WhenH. Moritz (1967, 1971) studied “kinematical geodesy” for the purpose of separation of gravitation and inertia, especially within combined accelerometer-gradiometer systems, it was hard to believe that within five years time inertial survey systems would be available, exactly operating according to his theoretical design. Here, we attempt to give a geodetic introduction into the fundamental equation of inertial positioning materialized by inertial survey systems with emphasis on a careful error model, including 36 parameters of type time interval, initial positions, initial gravity, varying acceleration, varying gravity gradients, accelerometer bias, accelerometer random uncertainty, accelerometer non-orthogonality, initial misalignment angles, accelerometer scale factor uncertainty. The notion of “multipoint” boundary value problem and initial value problem of inertial positioning is reviwed. So-called “post-mission” adjustment techniques for inertial surveys are discussed.
From kinematical geodesy to inertial positioning
Abstract WhenH. Moritz (1967, 1971) studied “kinematical geodesy” for the purpose of separation of gravitation and inertia, especially within combined accelerometer-gradiometer systems, it was hard to believe that within five years time inertial survey systems would be available, exactly operating according to his theoretical design. Here, we attempt to give a geodetic introduction into the fundamental equation of inertial positioning materialized by inertial survey systems with emphasis on a careful error model, including 36 parameters of type time interval, initial positions, initial gravity, varying acceleration, varying gravity gradients, accelerometer bias, accelerometer random uncertainty, accelerometer non-orthogonality, initial misalignment angles, accelerometer scale factor uncertainty. The notion of “multipoint” boundary value problem and initial value problem of inertial positioning is reviwed. So-called “post-mission” adjustment techniques for inertial surveys are discussed.
From kinematical geodesy to inertial positioning
Grafarend, E. W. (author)
Journal of Geodesy ; 55
1981
Article (Journal)
Electronic Resource
English
UB Braunschweig | 1968
|TIBKAT | 1968
|