A platform for research: civil engineering, architecture and urbanism
Can strategic technology development improve climate cooperation? A game-theoretic analysis
Abstract Clean technology has figured prominently in recent debates on international climate policy. This article offers a game-theoretic investigation of the possibility and effectiveness of strategic technology development: environmental leaders setting policies that reduce the global cost of clean technology. The game-theoretic model combines technology development and adoption with pollution abatement, and it allows technology costs to differ across countries. The key theoretical findings are as follows. First, free riding is an obstacle to technology development in two ways: countries fail to fully internalize the beneficial effect of technology development on (i) global pollution abatement and (ii) the reduced cost of technology adoption in outsider countries. Second, strategic technology development can be effective when (i) a key group of frontrunner countries prefers to invest in research and development and (ii) many other countries are willing to adopt the new technology. The findings suggest that strategic technology deployment by a group of frontrunners can enable more effective climate cooperation in the future.
Can strategic technology development improve climate cooperation? A game-theoretic analysis
Abstract Clean technology has figured prominently in recent debates on international climate policy. This article offers a game-theoretic investigation of the possibility and effectiveness of strategic technology development: environmental leaders setting policies that reduce the global cost of clean technology. The game-theoretic model combines technology development and adoption with pollution abatement, and it allows technology costs to differ across countries. The key theoretical findings are as follows. First, free riding is an obstacle to technology development in two ways: countries fail to fully internalize the beneficial effect of technology development on (i) global pollution abatement and (ii) the reduced cost of technology adoption in outsider countries. Second, strategic technology development can be effective when (i) a key group of frontrunner countries prefers to invest in research and development and (ii) many other countries are willing to adopt the new technology. The findings suggest that strategic technology deployment by a group of frontrunners can enable more effective climate cooperation in the future.
Can strategic technology development improve climate cooperation? A game-theoretic analysis
Urpelainen, Johannes (author)
2012
Article (Journal)
Electronic Resource
English
BKL:
43.47
Globale Umweltprobleme
/
43.47$jGlobale Umweltprobleme
DOAJ | 2019
|A game-theoretic approach to urban land development in China
Online Contents | 2008
|Evaluating Traceability Technology Adoption in Food Supply Chain: A Game Theoretic Approach
DOAJ | 2023
|