A platform for research: civil engineering, architecture and urbanism
Pasture diversification to combat climate change impacts on grazing dairy production
Abstract Among livestock systems, grazing is likely to be most impacted by climate change because of its dependency to feed quality and availability. In order to reduce the impact of climate change on grazing livestock systems, adaptation measures should be implemented. The goal of this study is to identify the best pasture composition for a representative grazing dairy farm in Michigan in order to reduce the impacts of climate change on production. In order to achieve the goal of this study, three objectives were sought: (1) identify the best pasture composition, (2) assess economic and resource use impacts of pasture compositions under future climate scenarios, and (3) evaluate the resiliency of pasture compositions. A representative farm was developed based on a livestock practices survey and incorporated into the Integrated Farm System Model (IFSM). For the pasture compositions, four cool-season grass species and two legumes were evaluated under both current and future climate scenarios. The effectiveness of adaptation measures based on economic and resource use criteria was evaluated. Overall, the pasture composition with 50% perennial ryegrass (Lolium multiflorum) and 50% red clover (Trifolium pratense) was identified as the best. In addition, the increase in precipitation and temperature of the most intensive climate scenario could significantly improve farm net return per cow (Bos taurus) and whole farm profit while no significant impact was observed on resource use criteria. Finally, the overall sensitivity assessment showed that the most resilient pasture composition under future climate scenarios was ryegrass with red clover and the least resilient was orchardgrass (Dactylis glomerata) with white clover (Trifolium repens).
Pasture diversification to combat climate change impacts on grazing dairy production
Abstract Among livestock systems, grazing is likely to be most impacted by climate change because of its dependency to feed quality and availability. In order to reduce the impact of climate change on grazing livestock systems, adaptation measures should be implemented. The goal of this study is to identify the best pasture composition for a representative grazing dairy farm in Michigan in order to reduce the impacts of climate change on production. In order to achieve the goal of this study, three objectives were sought: (1) identify the best pasture composition, (2) assess economic and resource use impacts of pasture compositions under future climate scenarios, and (3) evaluate the resiliency of pasture compositions. A representative farm was developed based on a livestock practices survey and incorporated into the Integrated Farm System Model (IFSM). For the pasture compositions, four cool-season grass species and two legumes were evaluated under both current and future climate scenarios. The effectiveness of adaptation measures based on economic and resource use criteria was evaluated. Overall, the pasture composition with 50% perennial ryegrass (Lolium multiflorum) and 50% red clover (Trifolium pratense) was identified as the best. In addition, the increase in precipitation and temperature of the most intensive climate scenario could significantly improve farm net return per cow (Bos taurus) and whole farm profit while no significant impact was observed on resource use criteria. Finally, the overall sensitivity assessment showed that the most resilient pasture composition under future climate scenarios was ryegrass with red clover and the least resilient was orchardgrass (Dactylis glomerata) with white clover (Trifolium repens).
Pasture diversification to combat climate change impacts on grazing dairy production
Rojas-Downing, M. Melissa (author) / Nejadhashemi, A. Pouyan (author) / Abouali, Mohammad (author) / Daneshvar, Fariborz (author) / Al Masraf, Sabah Anwer Dawood (author) / Herman, Matthew R. (author) / Harrigan, Timothy (author) / Zhang, Zhen (author)
2017
Article (Journal)
Electronic Resource
English
BKL:
43.47
Globale Umweltprobleme
/
43.47$jGlobale Umweltprobleme
Dairy farm impacts of fencing riparian land: Pasture production and farm productivity
Online Contents | 2013
|CCS-an ambitious contribution to combat climate change
Online Contents | 2007
|Effects of Grazing System and Phosphorus Application on Pasture Quality
British Library Online Contents | 2002
|