A platform for research: civil engineering, architecture and urbanism
Suitability of biodiversity-area and biodiversity-perimeter relationships in ecology: a case study of urban ecosystems
Abstract Urban areas are probably the most fragmented environments with respect to the presence of semi-natural habitats and shape of these habitats may be significantly affected by urbanization. Patch perimeter in landscape or habitat studies is much less popular to study than patch area. The studied sites were situated in the industrial city of Pardubice, which is one of the ten largest cities in the Czech Republic with nearly 100,000 inhabitants. In total, 40 grasslands were studied within a circular area of 314 $ km^{2} $. Butterflies and beetles with diurnal activity were studied during timed survey walks. A Simultaneous autoregressive model was used for test of the effect of biodiversity-area and biodiversity-perimeter relationships and for exclusion of potential bias caused by spatial autocorrelation. The models including patch perimeter performed better than those using patch area in explaining species richness, abundance and diversity of investigated organisms and were less influenced by spatial autocorrelation. The main conclusion and recommendation of the present study is that researchers should pay more attention to the possible influence of the patch perimeter as a potential predictor or co-predictor for landscape and habitat studies – especially in urban areas, where the negative effects of fragmentation might be much higher than in rural or more natural landscapes. Performing preliminary tests on comparisons between area and perimeter is highly recommended.
Suitability of biodiversity-area and biodiversity-perimeter relationships in ecology: a case study of urban ecosystems
Abstract Urban areas are probably the most fragmented environments with respect to the presence of semi-natural habitats and shape of these habitats may be significantly affected by urbanization. Patch perimeter in landscape or habitat studies is much less popular to study than patch area. The studied sites were situated in the industrial city of Pardubice, which is one of the ten largest cities in the Czech Republic with nearly 100,000 inhabitants. In total, 40 grasslands were studied within a circular area of 314 $ km^{2} $. Butterflies and beetles with diurnal activity were studied during timed survey walks. A Simultaneous autoregressive model was used for test of the effect of biodiversity-area and biodiversity-perimeter relationships and for exclusion of potential bias caused by spatial autocorrelation. The models including patch perimeter performed better than those using patch area in explaining species richness, abundance and diversity of investigated organisms and were less influenced by spatial autocorrelation. The main conclusion and recommendation of the present study is that researchers should pay more attention to the possible influence of the patch perimeter as a potential predictor or co-predictor for landscape and habitat studies – especially in urban areas, where the negative effects of fragmentation might be much higher than in rural or more natural landscapes. Performing preliminary tests on comparisons between area and perimeter is highly recommended.
Suitability of biodiversity-area and biodiversity-perimeter relationships in ecology: a case study of urban ecosystems
Horák, Jakub (author)
Urban Ecosystems ; 19
2015
Article (Journal)
Electronic Resource
English
BKL:
43.31
Naturschutz
/
42.90$jÖkologie: Allgemeines
/
43.31$jNaturschutz
/
42.90
Ökologie: Allgemeines
/
74.12
Stadtgeographie, Siedlungsgeographie
/
74.12$jStadtgeographie$jSiedlungsgeographie
Biodiversity concepts and urban ecosystems
Elsevier | 2000
|Biodiversity concepts and urban ecosystems
Online Contents | 1999
|Biodiversity concepts and urban ecosystems
British Library Conference Proceedings | 2000
|Novel urban ecosystems, biodiversity, and conservation
Online Contents | 2011
|