A platform for research: civil engineering, architecture and urbanism
Strain hardening behavior of lightweight hybrid polyvinyl alcohol (PVA) fiber reinforced cement composites
Abstract Experimental results on the strain hardening and multiple cracking behaviors of polyvinyl alcohol (PVA) fiber reinforced cementitious composites under bending are reported in this paper. Different hybrid combinations of PVA fibers with different lengths and volume fractions are considered to reinforce the mortar matrix. Among different hybrid combinations, the composite containing 2% thicker PVA fibers of 12 mm length and 1% thinner PVA fibers of 6 mm length and the composite containing 2% thicker PVA fibers of 24 mm length and 1% thinner PVA fibers of 6 mm length showed the best performance in terms of highest ultimate load, largest CMOD (crack mouth opening displacement) at peak load and multiple cracking behavior. The effects of four types of light weight sands on the strain hardening and multiple cracking behavior of hybrid fiber composites are also evaluated in this study. It has been observed that the ultimate load and CMOD at peak load for all light weight hybrid fiber composites are almost the same irrespective of volume fractions of light weight sand. The composites containing finer light weight sands exhibited higher ultimate load than those containing coarser light weight sands. It is also observed that the hybrid fiber composite containing normal silica sand exhibited higher ultimate load than the composites with light weight sands.
Strain hardening behavior of lightweight hybrid polyvinyl alcohol (PVA) fiber reinforced cement composites
Abstract Experimental results on the strain hardening and multiple cracking behaviors of polyvinyl alcohol (PVA) fiber reinforced cementitious composites under bending are reported in this paper. Different hybrid combinations of PVA fibers with different lengths and volume fractions are considered to reinforce the mortar matrix. Among different hybrid combinations, the composite containing 2% thicker PVA fibers of 12 mm length and 1% thinner PVA fibers of 6 mm length and the composite containing 2% thicker PVA fibers of 24 mm length and 1% thinner PVA fibers of 6 mm length showed the best performance in terms of highest ultimate load, largest CMOD (crack mouth opening displacement) at peak load and multiple cracking behavior. The effects of four types of light weight sands on the strain hardening and multiple cracking behavior of hybrid fiber composites are also evaluated in this study. It has been observed that the ultimate load and CMOD at peak load for all light weight hybrid fiber composites are almost the same irrespective of volume fractions of light weight sand. The composites containing finer light weight sands exhibited higher ultimate load than those containing coarser light weight sands. It is also observed that the hybrid fiber composite containing normal silica sand exhibited higher ultimate load than the composites with light weight sands.
Strain hardening behavior of lightweight hybrid polyvinyl alcohol (PVA) fiber reinforced cement composites
Ahmed, Shaikh Faiz Uddin (author) / Mihashi, Hirozo (author)
2010
Article (Journal)
Electronic Resource
English
British Library Online Contents | 2011
|STRAIN HARDENING BEHAVIOR OF HYBRID FIBER REINFORCED CEMENT COMPOSITES
British Library Conference Proceedings | 2001
|