A platform for research: civil engineering, architecture and urbanism
Sulfate resistance of Portland-limestone cements in combination with supplementary cementitious materials
Abstract In this study, the sulfate resistance of five different high-$ C_{3} $A Portland and Portland-limestone cements and their combinations with 30–50 % slag were examined at both 5 and 23 °C according to CSA A3004-C8 (similar to ASTM C1012). Also, XRD was used to identify the phases formed after sulfate attack. It was found that in 23 °C exposure, while 100 % cement mixes deteriorated due to conventional ettringite-based sulfate attack, partially replacing the cements with 30 or 50 % slag was effective in making the mixes highly sulfate-resistant. At 5 °C, all of the 100 % cement mortar bars expanded more than the test limits and eventually completely disintegrated due to the formation of thaumasite. Partially replacing cement with 30 % slag was only effective in controlling the deterioration for Portland cements but not Portland-limestone cements. However, all the Portland-limestone cements with 50 % slag were resistant to the thaumasite form of sulfate attack after 2 years.
Sulfate resistance of Portland-limestone cements in combination with supplementary cementitious materials
Abstract In this study, the sulfate resistance of five different high-$ C_{3} $A Portland and Portland-limestone cements and their combinations with 30–50 % slag were examined at both 5 and 23 °C according to CSA A3004-C8 (similar to ASTM C1012). Also, XRD was used to identify the phases formed after sulfate attack. It was found that in 23 °C exposure, while 100 % cement mixes deteriorated due to conventional ettringite-based sulfate attack, partially replacing the cements with 30 or 50 % slag was effective in making the mixes highly sulfate-resistant. At 5 °C, all of the 100 % cement mortar bars expanded more than the test limits and eventually completely disintegrated due to the formation of thaumasite. Partially replacing cement with 30 % slag was only effective in controlling the deterioration for Portland cements but not Portland-limestone cements. However, all the Portland-limestone cements with 50 % slag were resistant to the thaumasite form of sulfate attack after 2 years.
Sulfate resistance of Portland-limestone cements in combination with supplementary cementitious materials
Ramezanianpour, Amir Mohammad (author) / Hooton, R. Douglas (author)
2012
Article (Journal)
English
British Library Online Contents | 2013
|Sulfate resistance of calcined clay – Limestone – Portland cements
Elsevier | 2018
|