A platform for research: civil engineering, architecture and urbanism
Mechanical properties of prestressed self-consolidating concrete
Abstract Since the mix design of self-consolidating concrete (SCC) differs from that of conventional concrete, mechanical properties of SCC may differ from those of vibrated concrete. An experimental program was performed to evaluate mechanical properties of SCC used for precast, prestressed applications. Sixteen SCC mixtures with a fixed slump flow of 680 ± 20 mm were prepared with different mixture parameters, including binder content and binder type, w/cm, dosage of viscosity-modifying admixture, and sand-to-total aggregate volume ratio. Two high-performance concrete mixtures that represent typically concrete used for precast, prestressed applications were investigated for the control mixtures. They were proportioned with 0.34 and 0.38 w/cm and had slump values of 150 mm. Mechanical properties of SCC were compared to code provisions to estimate compressive strength, elastic modulus, and flexural strength. The modified ACI 209-90 and CEB-FIP MC90 codes are found to provide good estimate for compressive strength prediction. The AASHTO 2007 model can provide good prediction of the elastic modulus and flexural strength of SCC.
Mechanical properties of prestressed self-consolidating concrete
Abstract Since the mix design of self-consolidating concrete (SCC) differs from that of conventional concrete, mechanical properties of SCC may differ from those of vibrated concrete. An experimental program was performed to evaluate mechanical properties of SCC used for precast, prestressed applications. Sixteen SCC mixtures with a fixed slump flow of 680 ± 20 mm were prepared with different mixture parameters, including binder content and binder type, w/cm, dosage of viscosity-modifying admixture, and sand-to-total aggregate volume ratio. Two high-performance concrete mixtures that represent typically concrete used for precast, prestressed applications were investigated for the control mixtures. They were proportioned with 0.34 and 0.38 w/cm and had slump values of 150 mm. Mechanical properties of SCC were compared to code provisions to estimate compressive strength, elastic modulus, and flexural strength. The modified ACI 209-90 and CEB-FIP MC90 codes are found to provide good estimate for compressive strength prediction. The AASHTO 2007 model can provide good prediction of the elastic modulus and flexural strength of SCC.
Mechanical properties of prestressed self-consolidating concrete
Long, Wu-Jian (author) / Khayat, Kamal H. (author) / Hwang, Soo-Duck (author)
2012
Article (Journal)
Electronic Resource
English
Mechanical properties of prestressed self-consolidating concrete
Online Contents | 2013
|Mechanical properties of prestressed self-consolidating concrete
Online Contents | 2012
|Mechanical properties of prestressed self-consolidating concrete
British Library Online Contents | 2013
|Mechanical properties of prestressed self-consolidating concrete
Springer Verlag | 2012
|Maturity of Prestressed Self-Consolidating Concrete
Tema Archive | 2013
|